High Performance Computing on Mobile Devices

Author(s):  
Atta ur Rehman Khan ◽  
Abdul Nasir Khan

Mobile devices are gaining high popularity due to support for a wide range of applications. However, the mobile devices are resource constrained and many applications require high resources. To cater to this issue, the researchers envision usage of mobile cloud computing technology which offers high performance computing, execution of resource intensive applications, and energy efficiency. This chapter highlights importance of mobile devices, high performance applications, and the computing challenges of mobile devices. It also provides a brief introduction to mobile cloud computing technology, its architecture, types of mobile applications, computation offloading process, effective offloading challenges, and high performance computing application on mobile devises that are enabled by mobile cloud computing technology.

Author(s):  
Jyoti Grover ◽  
Gaurav Kheterpal

Mobile Cloud Computing (MCC) has become an important research area due to rapid growth of mobile applications and emergence of cloud computing. MCC refers to integration of cloud computing into a mobile environment. Cloud providers (e.g. Google, Amazon, and Salesforce) support mobile users by providing the required infrastructure (e.g. servers, networks, and storage), platforms, and software. Mobile devices are rapidly becoming a fundamental part of human lives and these enable users to access various mobile applications through remote servers using wireless networks. Traditional mobile device-based computing, data storage, and large-scale information processing is transferred to “cloud,” and therefore, requirement of mobile devices with high computing capability and resources are reduced. This chapter provides a survey of MCC including its definition, architecture, and applications. The authors discuss the issues in MCC, existing solutions, and approaches. They also touch upon the computation offloading mechanism for MCC.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 108
Author(s):  
Abid Ali ◽  
Muhammad Munawar Iqbal ◽  
Harun Jamil ◽  
Habib Akbar ◽  
Ammar Muthanna ◽  
...  

With the increasing number of mobile devices and IoT devices across a wide range of real-life applications, our mobile cloud computing devices will not cope with this growing number of audiences soon, which implies and demands the need to shift to fog computing. Task scheduling is one of the most demanding scopes after the trust computation inside the trustable nodes. The mobile devices and IoT devices transfer the resource-intensive tasks towards mobile cloud computing. Some tasks are resource-intensive and not trustable to allocate to the mobile cloud computing resources. This consequently gives rise to trust evaluation and data sync-up of devices joining and leaving the network. The resources are more intensive for cloud computing and mobile cloud computing. Time, energy, and resources are wasted due to the nontrustable nodes. This research article proposes a multilevel trust enhancement approach for efficient task scheduling in mobile cloud environments. We first calculate the trustable tasks needed to offload towards the mobile cloud computing. Then, an efficient and dynamic scheduler is added to enhance the task scheduling after trust computation using social and environmental trust computation techniques. To improve the time and energy efficiency of IoT and mobile devices using the proposed technique, the energy computation and time request computation are compared with the existing methods from literature, which identified improvements in the results. Our proposed approach is centralized to tackle constant SyncUPs of incoming devices’ trust values with mobile cloud computing. With the benefits of mobile cloud computing, the centralized data distribution method is a positive approach.


2015 ◽  
Vol 7 (2) ◽  
pp. 1-19 ◽  
Author(s):  
Muhammad Faheem ◽  
Tahar Kechadi ◽  
Nhien An Le-Khac

Smartphones have become popular in recent days due to the accessibility of a wide range of applications. These sophisticated applications demand more computing resources in a resource constraint smartphone. Cloud computing is the motivating factor for the progress of these applications. The emerging mobile cloud computing introduces a new architecture to offload smartphone and utilize cloud computing technology to solve resource requirements. The popularity of mobile cloud computing is an opportunity for misuse and unlawful activities. Therefore, it is a challenging platform for digital forensic investigations due to the non-availability of methodologies, tools and techniques. The aim of this work is to analyze the forensic tools and methodologies for crime investigation in a mobile cloud platform as it poses challenges in proving the evidence.


Author(s):  
CH. Ellaji ◽  
C. Pradeepthi ◽  
P. JayaSri

The development and upgrades that mobile gadgets have encountered, they are as yet considered as restricted registering gadgets. Presently, clients become the more requesting and hope to execute computational serious applications on their mobile gadgets. Accordingly, Mobile Cloud Computing (MCC) coordinates versatile figuring and Cloud Computing (CC) so as to broaden capacities of mobile devices utilizing of?oading procedures. Computational of?oading handles restrictions of Smart Mobile Devices (SMDs, for example, constrained battery lifetime, constrained preparing capabilities, and constrained Storage capacity by of?oading the execution and outstanding burden to other rich frameworks with better execution and assets. Here, the current of?oading systems, Compuatational of?oading strategies, and evaluate them alongside their principle basic issues. In addition, it investigates distinctive significant parameters dependent on which the systems are actualized, for example, of?oading technique and level of dividing. At last, it condenses the issues in of?oading systems in the MCC space that requires further research.


Sign in / Sign up

Export Citation Format

Share Document