Hybrid Non-Dominated Sorting Genetic Algorithm

Author(s):  
Sankhadeep Chatterjee ◽  
Sarbartha Sarkar ◽  
Nilanjan Dey ◽  
Amira S. Ashour ◽  
Soumya Sen

Water pollution due to industrial and domestic reasons is highly affecting the water quality. In undeveloped and developed countries, it has become a major reason behind a number of water borne diseases. Poor public health is putting an extra economic liability in order to deploy precautionary measures against these diseases. Recent research works have been directed toward more sustainable solutions to this problem. It has been revealed that good quality of water supply can not only improve the public health, it also accelerates economic growth of a geographical location as well. Water quality prediction using machine learning methods is still at its primitive stage. Besides, most of the studies did not follow any national or international standard for water quality prediction. In the current work, both the problems have been addressed. First, advanced machine learning methods, namely Artificial Neural Networks (ANNs) supported by a well-known multi-objective optimization algorithm called the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) has been used to classify the water samples into two different classes. Secondly, Indian national standard for water quality (IS 10500:2012) has been utilized for this classification task. The hybrid NN-NSGA-II model is compared with another two well-known meta-heuristic supported ANN classifiers, namely ANN trained by Genetic Algorithm (NN-GA) and by Particle Swarm Optimization (NN-PSO). Apart from that, the support vector machine (SVM) has also been included in the comparative study. Besides analysing the performance based on several performance measuring methods, the statistical significance of the results obtained by NN-NSGA-II has been judged by performing Wilcoxon rank sum test with 5% confidence level. Results have indicated the ingenuity of the proposed NN-NSGA-II model over the other classifiers under current study.

2019 ◽  
Vol 578 ◽  
pp. 124084 ◽  
Author(s):  
Ali Najah Ahmed ◽  
Faridah Binti Othman ◽  
Haitham Abdulmohsin Afan ◽  
Rusul Khaleel Ibrahim ◽  
Chow Ming Fai ◽  
...  

2020 ◽  
Author(s):  
Juan David Gutiérrez

Abstract Background: Previous authors have evidenced the relationship between air pollution-aerosols and meteorological variables with the occurrence of pneumonia. Forecasting the number of attentions of pneumonia cases may be useful to optimize the allocation of healthcare resources and support public health authorities to implement emergency plans to face an increase in patients. The purpose of this study is to implement four machine-learning methods to forecast the number of attentions of pneumonia cases in the five largest cities of Colombia by using air pollution-aerosols, and meteorological and admission data.Methods: The number of attentions of pneumonia cases in the five most populated Colombian cities was provided by public health authorities between January 2009 and December 2019. Air pollution-aerosols and meteorological data were obtained from remote sensors. Four machine-learning methods were implemented for each city. We selected the machine-learning methods with the best performance in each city and implemented two techniques to identify the most relevant variables in the forecasting developed by the best-performing machine-learning models. Results: According to R2 metric, random forest was the machine-learning method with the best performance for Bogotá, Medellín and Cali; whereas for Barranquilla, the best performance was obtained from the Bayesian adaptive regression trees, and for Cartagena, extreme gradient boosting had the best performance. The most important variables for the forecasting were related to the admission data.Conclusions: The results obtained from this study suggest that machine learning can be used to efficiently forecast the number of attentions of pneumonia cases, and therefore, it can be a useful decision-making tool for public health authorities.


Sign in / Sign up

Export Citation Format

Share Document