A Comparative Investigation of Structural Performance of Typical and Non-Ducitle Public RC Buildings Strengthened Using Friction Dampers and RC Walls

2019 ◽  
pp. 1073-1089
Author(s):  
Erkan Akpinar ◽  
Seckin Ersin

Strengthening of non-ductile public buildings is a never-ending issue. Selection of the suitable strengthening method and appropriate analysis type for the assessment of pre- and the post-intervention performances are still open to question. The displacement or drift limitations are crucial as well as demand capacity ratios for determination of such buildings performance under severe ground motion. In this chapter, an investigation of seismic performance focused on displacement criterion of strengthened non-ductile public RC buildings in Turkey is presented. Both the nonlinear static and response history analysis were conducted. Friction dampers which are fairly modern technique and conventional RC wall implementation method were introduced to as-is building. For the simplicity and the easy of the process, 2D frame selected for investigation. Comparison of the aforementioned techniques for non-ductile public RC buildings and performances particularly by means of displacement obtained using different methods for those investigated schemes are carried out and presented in the chapter.

Author(s):  
Erkan Akpinar ◽  
Seckin Ersin

Strengthening of non-ductile public buildings is a never-ending issue. Selection of the suitable strengthening method and appropriate analysis type for the assessment of pre- and the post-intervention performances are still open to question. The displacement or drift limitations are crucial as well as demand capacity ratios for determination of such buildings performance under severe ground motion. In this chapter, an investigation of seismic performance focused on displacement criterion of strengthened non-ductile public RC buildings in Turkey is presented. Both the nonlinear static and response history analysis were conducted. Friction dampers which are fairly modern technique and conventional RC wall implementation method were introduced to as-is building. For the simplicity and the easy of the process, 2D frame selected for investigation. Comparison of the aforementioned techniques for non-ductile public RC buildings and performances particularly by means of displacement obtained using different methods for those investigated schemes are carried out and presented in the chapter.


2015 ◽  
Vol 31 (3) ◽  
pp. 1691-1710 ◽  
Author(s):  
Lynne S. Burks ◽  
Reid B. Zimmerman ◽  
Jack W. Baker

Chapter 16 of ASCE 7 governs the selection of ground motions for analysis of new buildings and requires recordings that meet specified criteria. If a sufficient number of recordings cannot be found, it allows the use of “appropriate simulated ground motions,” but does not provide further guidance. This paper outlines a procedure for generating and selecting a set of “appropriate” hybrid broadband simulations and a comparable set of recordings. Both ground motion sets are used to analyze a building in Berkeley, California, and the predicted structural performance is compared. The structural behavior resulting from recordings and simulations is similar, and most discrepancies are explained by differences in directional properties such as orientation of the maximum spectral response. These results suggest that when simulations meet the criteria outlined for recordings in ASCE 7 and properties such as directionality are realistically represented, simulations provide useful results for structural analysis and design.


2021 ◽  
pp. 875529302098197
Author(s):  
Jack W Baker ◽  
Sanaz Rezaeian ◽  
Christine A Goulet ◽  
Nicolas Luco ◽  
Ganyu Teng

This manuscript describes a subset of CyberShake numerically simulated ground motions that were selected and vetted for use in engineering response-history analyses. Ground motions were selected that have seismological properties and response spectra representative of conditions in the Los Angeles area, based on disaggregation of seismic hazard. Ground motions were selected from millions of available time series and were reviewed to confirm their suitability for response-history analysis. The processes used to select the time series, the characteristics of the resulting data, and the provided documentation are described in this article. The resulting data and documentation are available electronically.


2017 ◽  
Vol 33 (2) ◽  
pp. 419-447 ◽  
Author(s):  
Reid B. Zimmerman ◽  
Jack W. Baker ◽  
John D. Hooper ◽  
Stephen Bono ◽  
Curt B. Haselton ◽  
...  

This paper represents the third part of a series of four publications on response history analysis for new buildings. Three real-building examples designed to a prior version of the building code are chosen, having a range of target spectrum characteristics, tectonic settings, and structural systems to test the new procedure and document its appropriate implementation. This paper describes the process of determining both MCER spectra and scenario spectra for all three examples. It explores selection of appropriate recorded ground motions and the procedure for scaling and spectrally matching to a maximum direction spectrum. Global results such as drift and treatment of unacceptable response, and local results such as force-and deformation-controlled acceptance criteria checks, are shown for each example. Practical guidance is given on implementing response history analysis for engineers employing the new Chapter 16.


Author(s):  
Gareth J. Morris ◽  
Andrew J. Thompson ◽  
James N. Dismuke ◽  
Brendon A. Bradley

Nonlinear response history analysis (NLRHA), or so-called “nonlinear time history analysis”, is adopted by practicing structural engineers who implement performance-based seismic design and/or assessment procedures. One important aspect in obtaining reliable output from the NLRHA procedure is the input ground motion records. The underlying intention of ground motion selection and amplitude-scaling procedures is to ensure the input for NLRHA is representative of the ground shaking hazard level, for a given site and structure. The purpose of this paper is to highlight the salient limitations of the ground motion selection and scaling requirements in Sections 5.5 and 6.4 of the New Zealand (NZ) loading standard NZS 1170.5 (2004). From a NZ regulatory perspective; there is no specific framework for seismic hazard analysis and ground motion selection (thus self-regulation is the current norm). In contrast, NZS 1170.5 contains many prescriptive requirements for scaling and applying records which are challenging to satisfy in practice. Also discussed within, there are implications for more modern guidance documents in NZ, such as the 2017 “Assessment Guidelines” for existing buildings, which cite NZS 1170.5, a standard which is at least 16 years old (draft issued in 2002). To emphasize the above issues with NZS 1170.5, this paper presents a summary of the more contemporary approaches in the US standards ASCE 7-16 (new buildings) and ASCE 41-17 (existing buildings), along with some examples of the more stringent US requirements for Tall Buildings.


Author(s):  
Brendon A. Bradley

This paper provides a comparison of four different seismic performance metrics which relate to the determination of design seismic demands from seismic response history analyses. The considered metrics include those implemented in New Zealand and international codes of practice, as well as emerging metrics which are well established in related research and state-of-the-art practice, but have yet to find their way into conventional guidelines. The metrics are directly compared and contrasted based on a central example. It is illustrated that the use of the “maximum demand” metric in the NZ loadings standard, and the “mean demand” in international codes of practice are notably conservative and unconservative, respectively. Either of the two emerging metrics provide a significant improvement, and given that they require the same information from an analyst’s perspective, are recommended as replacements.


Sign in / Sign up

Export Citation Format

Share Document