Automatic Emotion Recognition Based on Non-Contact Gaits Information

Author(s):  
Jingying Wang ◽  
Baobin Li ◽  
Changye Zhu ◽  
Shun Li ◽  
Tingshao Zhu

Automatic emotion recognition was of great value in many applications; however, to fully display the application value of emotion recognition, more portable, non-intrusive, inexpensive technologies need to be developed. Except face expression and voices, human gaits could reflect the walker's emotional state too. By utilizing 59 participants' gaits data with emotion labels, the authors train machine learning models that are able to “sense” individual emotion. Experimental results show these models work very well and prove that gait features are effective in characterizing and recognizing emotions.

Author(s):  
Jingying Wang ◽  
Baobin Li ◽  
Changye Zhu ◽  
Shun Li ◽  
Tingshao Zhu

Automatic emotion recognition was of great value in many applications, however, to fully display the application value of emotion recognition, more portable, non-intrusive, inexpensive technologies need to be developed. Except face expression and voices, human gaits could reflect the walker's emotional state too. By utilizing 59 participants' gaits data with emotion labels, we train machine learning models that are able to “sense” individual emotion. Experimental results show these models work very well, proved that gait features are effective in characterizing and recognizing emotions.


2007 ◽  
Vol 16 (06) ◽  
pp. 1001-1014 ◽  
Author(s):  
PANAGIOTIS ZERVAS ◽  
IOSIF MPORAS ◽  
NIKOS FAKOTAKIS ◽  
GEORGE KOKKINAKIS

This paper presents and discusses the problem of emotion recognition from speech signals with the utilization of features bearing intonational information. In particular parameters extracted from Fujisaki's model of intonation are presented and evaluated. Machine learning models were build with the utilization of C4.5 decision tree inducer, instance based learner and Bayesian learning. The datasets utilized for the purpose of training machine learning models were extracted from two emotional databases of acted speech. Experimental results showed the effectiveness of Fujisaki's model attributes since they enhanced the recognition process for most of the emotion categories and learning approaches helping to the segregation of emotion categories.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yameng Wang ◽  
Jingying Wang ◽  
Xiaoqian Liu ◽  
Tingshao Zhu

While depression is one of the most common mental disorders affecting more than 300 million people across the world, it is often left undiagnosed. This paper investigated the association between depression and gait characteristics with the aim to assist in diagnosing depression. Our dataset consisted of 121 healthy people and 126 patients with depression who diagnosed by psychiatrists according to the Diagnostic and Statistical Manual of Mental Disorders. Spatiotemporal, temporal-domain, and frequency-domain features were extracted based on the walking data of 247 participants recorded by Microsoft Kinect (Version 2). Multiple logistic regression was used to analyze the variance of spatiotemporal (12.55%), time-domain (58.36%), and frequency-domain features (60.71%) on recognizing depression based on Nagelkerke's R2 measure, respectively. The contributions of the different types of features were further explored by building machine learning models by using support vector machine algorithm. All the combinations of the three types of gait features were used as training data of machine learning models, respectively. The results showed that the model trained using only time- and frequency-domain features demonstrated the same best performance compared to the model trained using all the features (sensitivity = 0.94, specificity = 0.91, and AUC = 0.93). These results indicated that depression could be effectively recognized through gait analysis. This approach is a step forward toward developing low-cost, non-intrusive solutions for real-time depression recognition.


Author(s):  
Sergio Pulido-Castro ◽  
Nubia Palacios-Quecan ◽  
Michelle P. Ballen-Cardenas ◽  
Sandra Cancino-Suarez ◽  
Alejandra Rizo-Arevalo ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Nima Farhoumandi ◽  
Sadegh Mollaey ◽  
Soomaayeh Heysieattalab ◽  
Mostafa Zarean ◽  
Reza Eyvazpour

Objective. Alexithymia, as a fundamental notion in the diagnosis of psychiatric disorders, is characterized by deficits in emotional processing and, consequently, difficulties in emotion recognition. Traditional tools for assessing alexithymia, which include interviews and self-report measures, have led to inconsistent results due to some limitations as insufficient insight. Therefore, the purpose of the present study was to propose a new screening tool that utilizes machine learning models based on the scores of facial emotion recognition task. Method. In a cross-sectional study, 55 students of the University of Tabriz were selected based on the inclusion and exclusion criteria and their scores in the Toronto Alexithymia Scale (TAS-20). Then, they completed the somatization subscale of Symptom Checklist-90 Revised (SCL-90-R), Beck Anxiety Inventory (BAI) and Beck Depression Inventory-II (BDI-II), and the facial emotion recognition (FER) task. Afterwards, support vector machine (SVM) and feedforward neural network (FNN) classifiers were implemented using K-fold cross validation to predict alexithymia, and the model performance was assessed with the area under the curve (AUC), accuracy, sensitivity, specificity, and F1-measure. Results. The models yielded an accuracy range of 72.7–81.8% after feature selection and optimization. Our results suggested that ML models were able to accurately distinguish alexithymia and determine the most informative items for predicting alexithymia. Conclusion. Our results show that machine learning models using FER task, SCL-90-R, BDI-II, and BAI could successfully diagnose alexithymia and also represent the most influential factors of predicting it and can be used as a clinical instrument to help clinicians in diagnosis process and earlier detection of the disorder.


2021 ◽  
Author(s):  
Giancarlo Canales Barreto ◽  
Nicholas Lamb

We present a cache attack monitoring methodology that leverages statistical machine learning models to detect n-day hardware attacks by analyzing the electromagnetic emanations of a device. Experimental results from a Raspberry Pi 4 hosting Linux and a Jetson TX2 development board running a Linux guest hosted by seL4 demonstrate that our approach can sense Spectre attacks with a concordance statistic of 97% and 95%.


Author(s):  
Felix Bensmann ◽  
Andrea Papenmeier ◽  
Dagmar Kern ◽  
Benjamin Zapilko ◽  
Stefan Dietze

Abstract Semantic technologies offer significant potential for improving data search applications. Ongoing work thrives to equip data catalogs with new semantic search features to supplement existing keyword search and browsing capabilities. In particular within the social sciences, searching and reusing data is essential to foster efficient research. In this paper, we introduce an approach and experimental results aimed at improving interoperability and findability of social sciences survey items. Our contributions include a conceptual model for semantically representing survey items and questions, detailing meaningful dimensions of items, as well as experimental results geared towards the automated prediction of such item features using state-of-the-art machine learning models. Dimensions of interest include, for instance, references to geolocation and time periods or the scope and style of particular questions. We define classification tasks using neural and traditional machine learning models combined with sentence structure features. Applications of our work include semantic and faceted search for questions as part of our GESIS Search. We also provide the lifted data as a knowledge graph via a SPARQL endpoint for further reuse and sharing.


2021 ◽  
pp. 249-261
Author(s):  
Swaraj Dhondge ◽  
Rashmi Shewale ◽  
Madhura Satao ◽  
Jayashree Jagdale

2021 ◽  
Author(s):  
Giancarlo Canales Barreto ◽  
Nicholas Lamb

We present a cache attack monitoring methodology that leverages statistical machine learning models to detect n-day hardware attacks by analyzing the electromagnetic emanations of a device. Experimental results from a Raspberry Pi 4 hosting Linux and a Jetson TX2 development board running a Linux guest hosted by seL4 demonstrate that our approach can sense Spectre attacks with a concordance statistic of 97% and 95%.


Sign in / Sign up

Export Citation Format

Share Document