gait features
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 81)

H-INDEX

14
(FIVE YEARS 4)

Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 112
Author(s):  
Seung Hyun Lee ◽  
Sang-Min Park ◽  
Sang Seok Yeo ◽  
Ojin Kwon ◽  
Mi-Kyung Lee ◽  
...  

The second most common progressive neurodegenerative disorder, Parkinson’s disease (PD), is characterized by a broad spectrum of symptoms that are associated with its progression. Several studies have attempted to classify PD according to its clinical manifestations and establish objective biomarkers for early diagnosis and for predicting the prognosis of the disease. Recent comprehensive research on the classification of PD using clinical phenotypes has included factors such as dominance, severity, and prognosis of motor and non-motor symptoms and biomarkers. Additionally, neuroimaging studies have attempted to reveal the pathological substrate for motor symptoms. Genetic and transcriptomic studies have contributed to our understanding of the underlying molecular pathogenic mechanisms and provided a basis for classifying PD. Moreover, an understanding of the heterogeneity of clinical manifestations in PD is required for a personalized medicine approach. Herein, we discuss the possible subtypes of PD based on clinical features, neuroimaging, and biomarkers for developing personalized medicine for PD. In addition, we conduct a preliminary clustering using gait features for subtyping PD. We believe that subtyping may facilitate the development of therapeutic strategies for PD.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8208
Author(s):  
Jaerock Kwon ◽  
Yunju Lee ◽  
Jehyung Lee

The model-based gait analysis of kinematic characteristics of the human body has been used to identify individuals. To extract gait features, spatiotemporal changes of anatomical landmarks of the human body in 3D were preferable. Without special lab settings, 2D images were easily acquired by monocular video cameras in real-world settings. The 2D and 3D locations of key joint positions were estimated by the 2D and 3D pose estimators. Then, the 3D joint positions can be estimated from the 2D image sequences in human gait. Yet, it has been challenging to have the exact gait features of a person due to viewpoint variance and occlusion of body parts in the 2D images. In the study, we conducted a comparative study of two different approaches: feature-based and spatiotemporal-based viewpoint invariant person re-identification using gait patterns. The first method is to use gait features extracted from time-series 3D joint positions to identify an individual. The second method uses a neural network, a Siamese Long Short Term Memory (LSTM) network with the 3D spatiotemporal changes of key joint positions in a gait cycle to classify an individual without extracting gait features. To validate and compare these two methods, we conducted experiments with two open datasets of the MARS and CASIA-A datasets. The results show that the Siamese LSTM outperforms the gait feature-based approaches on the MARS dataset by 20% and 55% on the CASIA-A dataset. The results show that feature-based gait analysis using 2D and 3D pose estimators is premature. As a future study, we suggest developing large-scale human gait datasets and designing accurate 2D and 3D joint position estimators specifically for gait patterns. We expect that the current comparative study and the future work could contribute to rehabilitation study, forensic gait analysis and early detection of neurological disorders.


2021 ◽  
Author(s):  
Guy Bogaarts ◽  
Mattia Zanon ◽  
Frank Dondelinger ◽  
Adrian Derungs ◽  
Florian Lipsmeier ◽  
...  

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1038
Author(s):  
Shohel Sayeed ◽  
Pa Pa Min ◽  
Thian Song Ong

Background: Gait recognition is perceived as the most promising biometric approach for future decades especially because of its efficient applicability in surveillance systems. Due to recent growth in the use of gait biometrics across surveillance systems, the ability to rapidly search for the required data has become an emerging need. Therefore, we addressed the gait retrieval problem, which retrieves people with gaits similar to a query subject from a large-scale dataset. Methods: This paper presents the deep gait retrieval hashing (DGRH) model to address the gait retrieval problem for large-scale datasets. Our proposed method is based on a supervised hashing method with a deep convolutional network. We use the ability of the convolutional neural network (CNN) to capture the semantic gait features for feature representation and learn the compact hash codes with the compatible hash function. Therefore, our DGRH model combines gait feature learning with binary hash codes. In addition, the learning loss is designed with a classification loss function that learns to preserve similarity and a quantization loss function that controls the quality of the hash codes Results: The proposed method was evaluated against the CASIA-B, OUISIR-LP, and OUISIR-MVLP benchmark datasets and received the promising result for gait retrieval tasks. Conclusions: The end-to-end deep supervised hashing model is able to learn discriminative gait features and is efficient in terms of the storage memory and speed for gait retrieval.


2021 ◽  
Author(s):  
Ines Vandekerckhove ◽  
Marleen Van ◽  
Nathalie De ◽  
Anja Van ◽  
Liesbeth De ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jannis van Kersbergen ◽  
Karen Otte ◽  
Nienke M. de Vries ◽  
Bastiaan R. Bloem ◽  
Hanna M. Röhling ◽  
...  

Abstract Objective Parkinson’s disease is a common, age-related, neurodegenerative disease, affecting gait and other motor functions. Technological developments in consumer imaging are starting to provide high-quality, affordable tools for home-based diagnosis and monitoring. This pilot study aims to investigate whether a consumer depth camera can capture changes in gait features of Parkinson’s patients. The dataset consisted of 19 patients (tested in both a practically defined OFF phase and ON phase) and 8 controls, who performed the “Timed-Up-and-Go” test multiple times while being recorded with the Microsoft Kinect V2 sensor. Camera-derived features were step length, average walking speed and mediolateral sway. Motor signs were assessed clinically using the Movement Disorder Society Unified Parkinson’s Disease Rating Scale. Results We found significant group differences between patients and controls for step length and average walking speed, showing the ability to detect Parkinson’s features. However, there were no differences between the ON and OFF medication state, so further developments are needed to allow for detection of small intra-individual changes in symptom severity.


Sign in / Sign up

Export Citation Format

Share Document