A Practical UAV Remote Sensing Methodology to Generate Multispectral Orthophotos for Vineyards

2019 ◽  
pp. 271-294 ◽  
Author(s):  
Adam J. Mathews

This paper explores the use of compact digital cameras to remotely estimate spectral reflectance based on unmanned aerial vehicle imagery. Two digital cameras, one unaltered and one altered, were used to collect four bands of spectral information (blue, green, red, and near-infrared [NIR]). The altered camera had its internal hot mirror removed to allow the sensor to be additionally sensitive to NIR. Through on-ground experimentation with spectral targets and a spectroradiometer, the sensitivity and abilities of the cameras were observed. This information along with on-site collected spectral data were used to aid in converting aerial imagery digital numbers to estimates of scaled surface reflectance using the empirical line method. The resulting images were used to create spectrally-consistent orthophotomosaics of a vineyard study site. Individual bands were subsequently validated with in situ spectroradiometer data. Results show that red and NIR bands exhibited the best fit (R2: 0.78 for red; 0.57 for NIR).

2019 ◽  
pp. 298-322
Author(s):  
Adam J. Mathews

This paper explores the use of compact digital cameras to remotely estimate spectral reflectance based on unmanned aerial vehicle imagery. Two digital cameras, one unaltered and one altered, were used to collect four bands of spectral information (blue, green, red, and near-infrared [NIR]). The altered camera had its internal hot mirror removed to allow the sensor to be additionally sensitive to NIR. Through on-ground experimentation with spectral targets and a spectroradiometer, the sensitivity and abilities of the cameras were observed. This information along with on-site collected spectral data were used to aid in converting aerial imagery digital numbers to estimates of scaled surface reflectance using the empirical line method. The resulting images were used to create spectrally-consistent orthophotomosaics of a vineyard study site. Individual bands were subsequently validated with in situ spectroradiometer data. Results show that red and NIR bands exhibited the best fit (R2: 0.78 for red; 0.57 for NIR).


2015 ◽  
Vol 6 (4) ◽  
pp. 65-87 ◽  
Author(s):  
Adam J. Mathews

This paper explores the use of compact digital cameras to remotely estimate spectral reflectance based on unmanned aerial vehicle imagery. Two digital cameras, one unaltered and one altered, were used to collect four bands of spectral information (blue, green, red, and near-infrared [NIR]). The altered camera had its internal hot mirror removed to allow the sensor to be additionally sensitive to NIR. Through on-ground experimentation with spectral targets and a spectroradiometer, the sensitivity and abilities of the cameras were observed. This information along with on-site collected spectral data were used to aid in converting aerial imagery digital numbers to estimates of scaled surface reflectance using the empirical line method. The resulting images were used to create spectrally-consistent orthophotomosaics of a vineyard study site. Individual bands were subsequently validated with in situ spectroradiometer data. Results show that red and NIR bands exhibited the best fit (R2: 0.78 for red; 0.57 for NIR).


2021 ◽  
Vol 87 (12) ◽  
pp. 891-899
Author(s):  
Freda Elikem Dorbu ◽  
Leila Hashemi-Beni ◽  
Ali Karimoddini ◽  
Abolghasem Shahbazi

The introduction of unmanned-aerial-vehicle remote sensing for collecting high-spatial- and temporal-resolution imagery to derive crop-growth indicators and analyze and present timely results could potentially improve the management of agricultural businesses and enable farmers to apply appropriate solution, leading to a better food-security framework. This study aimed to analyze crop-growth indicators such as the normalized difference vegetation index (NDVI), crop height, and vegetated surface roughness to determine the growth of corn crops from planting to harvest. Digital elevation models and orthophotos generated from the data captured using multispectral, red/green/blue, and near-infrared sensors mounted on an unmanned aerial vehicle were processed and analyzed to calculate the various crop-growth indicators. The results suggest that remote sensing-based growth indicators can effectively determine crop growth over time, and that there are similarities and correlations between the indicators.


2019 ◽  
Vol 11 (22) ◽  
pp. 2667 ◽  
Author(s):  
Jiang ◽  
Cai ◽  
Zheng ◽  
Cheng ◽  
Tian ◽  
...  

Commercially available digital cameras can be mounted on an unmanned aerial vehicle (UAV) for crop growth monitoring in open-air fields as a low-cost, highly effective observation system. However, few studies have investigated their potential for nitrogen (N) status monitoring, and the performance of camera-derived vegetation indices (VIs) under different conditions remains poorly understood. In this study, five commonly used VIs derived from normal color (RGB) images and two typical VIs derived from color near-infrared (CIR) images were used to estimate leaf N concentration (LNC). To explore the potential of digital cameras for monitoring LNC at all crop growth stages, two new VIs were proposed, namely, the true color vegetation index (TCVI) from RGB images and the false color vegetation index (FCVI) from CIR images. The relationships between LNC and the different VIs varied at different stages. The commonly used VIs performed well at some stages, but the newly proposed TCVI and FCVI had the best performance at all stages. The performances of the VIs with red (or near-infrared) and green bands as the numerator were limited by saturation at intermediate to high LNCs (LNC > 3.0%), but the TCVI and FCVI had the ability to mitigate the saturation. The results of model validations further supported the superiority of the TCVI and FCVI for LNC estimation. Compared to the other VIs derived using RGB cameras, the relative root mean square errors (RRMSEs) of the TCVI were improved by 8.6% on average. For the CIR images, the best-performing VI for LNC was the FCVI (R2 = 0.756, RRMSE = 14.18%). The LNC–TCVI and LNC–FCVI were stable under different cultivars, N application rates, and planting densities. The results confirmed the applicability of UAV-based RGB and CIR cameras for crop N status monitoring under different conditions, which should assist the precision management of N fertilizers in agronomic practices.


2020 ◽  
Vol 12 (2) ◽  
pp. 215 ◽  
Author(s):  
Hainie Zha ◽  
Yuxin Miao ◽  
Tiantian Wang ◽  
Yue Li ◽  
Jing Zhang ◽  
...  

Optimizing nitrogen (N) management in rice is crucial for China’s food security and sustainable agricultural development. Nondestructive crop growth monitoring based on remote sensing technologies can accurately assess crop N status, which may be used to guide the in-season site-specific N recommendations. The fixed-wing unmanned aerial vehicle (UAV)-based remote sensing is a low-cost, easy-to-operate technology for collecting spectral reflectance imagery, an important data source for precision N management. The relationships between many vegetation indices (VIs) derived from spectral reflectance data and crop parameters are known to be nonlinear. As a result, nonlinear machine learning methods have the potential to improve the estimation accuracy. The objective of this study was to evaluate five different approaches for estimating rice (Oryza sativa L.) aboveground biomass (AGB), plant N uptake (PNU), and N nutrition index (NNI) at stem elongation (SE) and heading (HD) stages in Northeast China: (1) single VI (SVI); (2) stepwise multiple linear regression (SMLR); (3) random forest (RF); (4) support vector machine (SVM); and (5) artificial neural networks (ANN) regression. The results indicated that machine learning methods improved the NNI estimation compared to VI-SLR and SMLR methods. The RF algorithm performed the best for estimating NNI (R2 = 0.94 (SE) and 0.96 (HD) for calibration and 0.61 (SE) and 0.79 (HD) for validation). The root mean square errors (RMSEs) were 0.09, and the relative errors were <10% in all the models. It is concluded that the RF machine learning regression can significantly improve the estimation of rice N status using UAV remote sensing. The application machine learning methods offers a new opportunity to better use remote sensing data for monitoring crop growth conditions and guiding precision crop management. More studies are needed to further improve these machine learning-based models by combining both remote sensing data and other related soil, weather, and management information for applications in precision N and crop management.


2020 ◽  
Vol 12 (13) ◽  
pp. 2155 ◽  
Author(s):  
Hezhen Lou ◽  
Pengfei Wang ◽  
Shengtian Yang ◽  
Fanghua Hao ◽  
Xiaoyu Ren ◽  
...  

Research into global water resources is challenged by the lack of ground-based hydrometric stations and limited data sharing. It is difficult to collect good quality, long-term information about river discharges in ungauged regions. Herein, an approach was developed to determine the river discharges of 24 rivers in ungauged regions on the Tibetan Plateau on a long-term scale. This method involved coupling the Manning–Strickler formula, and data from an unmanned aerial vehicle (UAV) and the Gaofen-2, SPOT-5, and Sentinel-2 satellites. We also compared the discharges calculated by using the three satellites’ data. Fundamental information about the rivers was extracted from the UAV data. Comparison of the discharges calculated from the in-situ measurements and the UAV data gave an R2 value of 0.84, an average NSE of 0.79, and an RMSE of 0.11 m3/s. The river discharges calculated with the GF-2 remote sensing data and the in-situ experiments for the same months were compared and the R2, RMSE, and the NSE were 0.80, 1.8 m3/s, and 0.78, respectively. Comparing the discharges calculated over the long term from the measured in-situ data and the SPOT-5 and Sentinel-2 data gave R2 values of 0.93 and 0.92, and RMSE values of 2.56 m3/s and 3.16 m3/s, respectively. The results showed that the GF-2 and UAV were useful for calculating the discharges for low-flow rivers, while the SPOT-5 or the Sentinel-2 satellite gave good results for high-flow river discharges in the long-term. Our results demonstrate that the discharges in ungauged tributaries can be reliably estimated in the long-term with this method. This method extended the previous research, which described river discharge only in one period and provided more support to the monitoring and management of the tributaries in ungauged regions.


2020 ◽  
Vol 9 (1) ◽  
pp. 1-10
Author(s):  
Guillaume Jouvet ◽  
Eef van Dongen ◽  
Martin P. Lüthi ◽  
Andreas Vieli

Abstract. Measuring the ice flow motion accurately is essential to better understand the time evolution of glaciers and ice sheets and therefore to better anticipate the future consequence of climate change in terms of sea level rise. Although there are a variety of remote sensing methods to fill this task, in situ measurements are always needed for validation or to capture high-temporal-resolution movements. Yet glaciers are in general hostile environments where the installation of instruments might be tedious and risky when not impossible. Here we report the first-ever in situ measurements of ice flow motion using a remotely controlled unmanned aerial vehicle (UAV). We used a quadcopter UAV to land on a highly crevassed area of Eqip Sermia Glacier, West Greenland, to measure the displacement of the glacial surface with the aid of an onboard differential GNSS receiver. We measured approximately 70 cm of displacement over 4.36 h without setting foot onto the glacier – a result validated by applying UAV photogrammetry and template matching techniques. Our study demonstrates that UAVs are promising instruments for in situ monitoring and have great potential for capturing continuous ice flow variations in inaccessible glaciers – a task that remote sensing techniques can hardly achieve.


2014 ◽  
Vol 989-994 ◽  
pp. 3548-3551
Author(s):  
Ying Yang ◽  
Li Jun Wang ◽  
Lei Yang

With combining Unmanned Aerial Vehicle (UAV) and the high-precision of the low altitude Remote Sensing (RS) technology, UAV RS technology has become an important compleme-nt for satellite and manned aircraft RS, so it has drawn great attention of people at home and abroad. Most of UAV RS image technologies use small digital cameras to shoot so that it causes some proble-ms such as lower magnitude, more and larger morphing image. The image processing and mosaicing system of UAV RS implements the function of image identifying, selection of image group control points, geometric correction, mosaicing, seam lines eliminating automatically and rapidly with Interactive Data Language (IDL), and is targeted to solve the practical application problems such as preprocessing, mosaicing, seam-lines removing of civil UAV RS image.


Sign in / Sign up

Export Citation Format

Share Document