Trust-Based Security Mechanisms for Self-Organized Networks (SONs)

2020 ◽  
pp. 1782-1805
Author(s):  
S. Sivagurunathan ◽  
K. Prathapchandran

Self-Organized Networks (SONs) are an advancement of today's communication that arises to overcome the problems in traditional communications in terms of their planning, configuration, optimization, healing and management since the rate of utilizing communication technology is gradually increasing day by day hence an optimum mechanism is needed to cope up with all the changes in the communication era, the result is self-organized networks. The success of SONs depends on how it is effectively utilized without any compromise in its security. However its unique characteristics offer both opportunities and challenges. The aim of this chapter is to begins with the essential concept of SONs such as Mobile Ad Hoc Networks (MANET), Vehicular Ad Hoc Networks (VANET), Wireless Sensor Networks (WSN), Wireless Mesh Networks (WMN), Peer to Peer Networks (P2P), Cognitive Radio Networks, Bio-Inspired Networks and Internet of Things (IoT) and their limitations in different perspectives. As these networks have penetrated into the human life with an anytime anywhere capability, the security of the data being processed and communicated through these networks become vital. This chapter tries to bring out the issues and challenges in providing a trust based solution mechanisms for this type of networks.

Author(s):  
S. Sivagurunathan ◽  
K. Prathapchandran

Self-Organized Networks (SONs) are an advancement of today's communication that arises to overcome the problems in traditional communications in terms of their planning, configuration, optimization, healing and management since the rate of utilizing communication technology is gradually increasing day by day hence an optimum mechanism is needed to cope up with all the changes in the communication era, the result is self-organized networks. The success of SONs depends on how it is effectively utilized without any compromise in its security. However its unique characteristics offer both opportunities and challenges. The aim of this chapter is to begins with the essential concept of SONs such as Mobile Ad Hoc Networks (MANET), Vehicular Ad Hoc Networks (VANET), Wireless Sensor Networks (WSN), Wireless Mesh Networks (WMN), Peer to Peer Networks (P2P), Cognitive Radio Networks, Bio-Inspired Networks and Internet of Things (IoT) and their limitations in different perspectives. As these networks have penetrated into the human life with an anytime anywhere capability, the security of the data being processed and communicated through these networks become vital. This chapter tries to bring out the issues and challenges in providing a trust based solution mechanisms for this type of networks.


2015 ◽  
Vol 11 (8) ◽  
pp. 384869 ◽  
Author(s):  
Cándido Caballero-Gil ◽  
Pino Caballero-Gil ◽  
Jezabel Molina-Gil

2021 ◽  
Author(s):  
Martina Umlauft ◽  
Wilfried Elmenreich

Wireless Multi-Hop Networks (such as Mobile Ad hoc Networks, Wireless Sensor Networks, and Wireless Mesh Networks) promise improved flexibility, reliability, and performance compared to conventional Wireless Local Area Networks (WLAN) or sensor installations. They can be deployed quickly to provide network connectivity in areas without existing backbone/back-haul infrastructure, such as disaster areas, impassable terrain, or underserved communities. Due to their distributed nature, routing algorithms for these types of networks have to be self-organized. Ant routing is a bio-inspired self-organized method for routing, which is a promising approach for routing in such Wireless Multi-Hop Networks. This chapter provides an introduction to Wireless Multi-Hop Networks, their specific challenges, and an overview of the ant algorithms available for routing in such networks.


Author(s):  
Juan C. Guerri ◽  
Pau Arce ◽  
Patricia Acelas ◽  
Wilder E. Castellanos ◽  
Francisco Fraile

Video services are much demanded nowadays but bandwidth and delay requirements of this kind of services are very restrictive. Offering real-time video services in wireless ad-hoc networks is not an easy task because of the difficulty of guaranteeing certain quality in a shared medium. Practical solutions should try to improve communications at (and gathering information from) several layers of the protocol stack. Mobile Ad-hoc Networks are infrastructure-less wireless networks characterized by being very versatile, dynamic and self-organized but also by the difficulty to achieve a good Quality of Service in video transmissions due to packet losses and node mobility. On the other hand, the Wireless Mesh Network is presented as the next step in wireless networks. Wireless Mesh Networks have a hierarchical topology, clustered structure and static backbone, which all help to improve the network stability. In the way towards Wireless Mesh Networks, hierarchical routing protocols could transform an ad-hoc network in a more robust wireless network. Therefore, in this chapter, hierarchical routing protocols have been studied, particularly Hierarchical Optimized Link State Routing Protocol, and compared with a traditional flat routing protocol named Optimized Link State Routing. Furthermore, additional video coding techniques have been used in order to improve video quality in reception. At application layer, results show that Multi-description Coding achieves better quality on video transmissions when nodes have medium or high mobility, especially when using multipoint-to-point transmission or disjoint paths in a hierarchical structure. Video trace simulations have allowed us to perform subjective quality tests to assert the Quality of Experience improvements in video transmissions.


2018 ◽  
Vol 7 (1.9) ◽  
pp. 217
Author(s):  
Dr S.SivaNageswara Rao ◽  
Orchu Aruna ◽  
Dr K.Lakshminadh

Now a day, every one using mobile devices for communicating with others. The development of new technologies, like Internet of Things (IoT) needs coverage, connectivity, scalability and QoS. In ubiquity networks, the major issues are coverage, connectivity, scalability and QoS. To solve these limitations, integrating wireless networks with ad hoc networks. This paper provides detail survey on how ad hoc networks are integrated with Cellular Network, Wireless Mesh Networks and Wireless Sensor Networks. This integration may resolve the problems of coverage, connectivity, scalability and QoS.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Malik Bader Alazzam ◽  
Fawaz Alassery

In order to save human life and assets, the emergency management system (DMS) requires roving rescue teams to respond promptly and effectively. Installation and restoration of appropriate communication infrastructure are important for reducing the effect of disasters and enabling and coordinating information flow among relief teams working in the region. This paper describes a data collection system based on vehicular cloud network services that incorporates the advantages of both architectures of vehicular ad hoc networks (VANETs) with the cloud to establish vehicular cloud networks (VCNs). Vehicles in the current plan perform tasks like monitoring the environment, gathering data, and transmitting data to the control center depending on their positions and instructions. To build a disaster management system, the proposed system uses hybrid wireless networking, which includes both a central system and ad hoc networks. The implementation results show that the suggested system is more dependable and efficient; even light density is improved in terms of reachability with few hops. Furthermore, as compared to the existing system, the suggested system has a lower end-to-end delay and a higher packet delivery ratio.


Sign in / Sign up

Export Citation Format

Share Document