An Off-Line Optical Music Sheet Recognition

Author(s):  
Pierfrancesco Bellini ◽  
Ivan Bruno ◽  
Paolo Nesi

The optical music recognition is a key problem for coding music sheets of western music in the digital world. The most critical phase of the optical music recognition process is the first analysis of the image sheet. In optical processing of music or documents, the first analysis consists of segmenting the acquired sheet into smaller parts in order to recognize the basic symbols that allow reconstructing the original music symbol. In this chapter, an overview of the main issues and a survey of the main related works are discussed. The O3MR system (Object Oriented Optical Music Recognition) system is also described. The used approach in such system is based on the adoption of projections for the extraction of basic symbols that constitute graphic elements of the music notation. Algorithms and a set of examples are also included to better focus concepts and adopted solutions.

Author(s):  
Pierfrancesco Bellini ◽  
Ivan Bruno ◽  
Paolo Nesi

Optical music recognition is a key problem for coding western music sheets in the digital world. This problem has been addressed in several manners obtaining suitable results only when simple music constructs are processed. To this end, several different strategies have been followed, to pass from the simple music sheet image to a complete and consistent representation of music notation symbols (symbolic music notation or representation). Typically, image processing, pattern recognition and symbolic reconstruction are the technologies that have to be considered and applied in several manners the architecture of the so called OMR (Optical Music Recognition) systems. In this chapter, the O3MR (Object Oriented Optical Music Recognition) system is presented. It allows producing from the image of a music sheet the symbolic representation and save it in XML format (WEDELMUSIC XML and MUSICXML). The algorithms used in this process are those of the image processing, image segmentation, neural network pattern recognition, and symbolic reconstruction and reasoning. Most of the solutions can be applied in other field of image understanding. The development of the O3MR solution with all its algorithms has been partially supported by the European Commission, in the IMUTUS Research and Development project, while the related music notation editor has been partially funded by the research and development WEDELMUSIC project of the European Commission. The paper also includes a methodology for the assessment of other OMR systems. The set of metrics proposed has been used to assess the quality of results produce by the O3MR with respect the best OMR on market.


2014 ◽  
Vol 6 (1) ◽  
pp. 36-39
Author(s):  
Kevin Purwito

This paper describes about one of the many extension of Optical Character Recognition (OCR), that is Optical Music Recognition (OMR). OMR is used to recognize musical sheets into digital format, such as MIDI or MusicXML. There are many musical symbols that usually used in musical sheets and therefore needs to be recognized by OMR, such as staff; treble, bass, alto and tenor clef; sharp, flat and natural; beams, staccato, staccatissimo, dynamic, tenuto, marcato, stopped note, harmonic and fermata; notes; rests; ties and slurs; and also mordent and turn. OMR usually has four main processes, namely Preprocessing, Music Symbol Recognition, Musical Notation Reconstruction and Final Representation Construction. Each of those four main processes uses different methods and algorithms and each of those processes still needs further development and research. There are already many application that uses OMR to date, but none gives the perfect result. Therefore, besides the development and research for each OMR process, there is also a need to a development and research for combined recognizer, that combines the results from different OMR application to increase the final result’s accuracy. Index Terms—Music, optical character recognition, optical music recognition, musical symbol, image processing, combined recognizer  


Author(s):  
Zhe Xiao ◽  
Xin Chen ◽  
Li Zhou ◽  
◽  
◽  
...  

Traditional optical music recognition (OMR) is an important technology that automatically recognizes scanned paper music sheets. In this study, traditional OMR is combined with robotics, and a real-time OMR system for a dulcimer musical robot is proposed. This system gives the musical robot a stronger ability to perceive and understand music. The proposed OMR system can read music scores, and the recognized information is converted into a standard electronic music file for the dulcimer musical robot, thus achieving real-time performance. During the recognition steps, we treat note groups and isolated notes separately. Specially structured note groups are identified by primitive decomposition and structural analysis. The note groups are decomposed into three fundamental elements: note stem, note head, and note beams. Isolated music symbols are recognized based on shape model descriptors. We conduct tests on real pictures taken live by a camera. The tests show that the proposed method has a higher recognition rate.


Author(s):  
Graham Jones ◽  
Bee Ong ◽  
Ivan Bruno ◽  
Kia NG

This paper presents the applications and practices in the domain of music imaging for musical scores (music sheets and music manuscripts), which include music sheet digitisation, optical music recognition (OMR) and optical music restoration. With a general background of Optical Music Recognition (OMR), the paper discusses typical obstacles in this domain and reports currently available commercial OMR software. It reports hardware and software related to music imaging, discussed the SharpEye optical music recognition system and provides an evaluation of a number of OMR systems. Besides the main focus on the transformation from images of music scores to symbolic format, this paper also discusses optical music image restoration and the application of music imaging techniques for graphical preservation and potential applications for cross-media integration.


Author(s):  
Susan E. George

The aim of optical music recognition (OMR) is to “recognise” images of music notation and capture the “meaning” of the music. When OMR is successful it will be able to automatically extract a logical representation of printed or handwritten music captured in an image. There are a variety of reasons why OMR is required. Chiefly, it is convenient for swift input of music notation and might be subsequently edited, performed, used as a search or other. There are many stages before that final high-level interpretation can be made and recognition of the primitive symbols contained in the notation is primary. One of the biggest challenges in OMR is the super-imposition of music notation symbols – notes and other – upon stave lines in the music image. This article examines a general-purpose knowledge-free method in the wavelet transform, to deal with super-imposition in images of typeset music.


Author(s):  
YUNG-SHENG CHEN ◽  
FENG-SHENG CHEN ◽  
CHIN-HUNG TENG

Optical Music Recognition (OMR) is a technique for converting printed musical documents into computer readable formats. In this paper, we present a simple OMR system that can perform well for ordinary musical documents such as ballad and pop music. This system is constructed based on fundamental image processing and pattern recognition techniques, thus it is easy to implement. Moreover, this system has a strong capability in skew restoration and inverted musical score detection. From a series of experiments, the error for our skew restoration is below 0.2° for any possible document rotation and the accuracy of inverted musical score detection is up to 98.89%. The overall recognition accuracy of our OMR can achieve to nearly 97%, a figure comparable with current commercial OMR software. However, if taking into image skew into consideration, our system is superior to commercial software in terms of recognition accuracy.


2015 ◽  
Vol 58 ◽  
pp. 1-7 ◽  
Author(s):  
Cuihong Wen ◽  
Ana Rebelo ◽  
Jing Zhang ◽  
Jaime Cardoso

Sign in / Sign up

Export Citation Format

Share Document