Sharing Information Efficiently in Cooperative Multi-Robot Systems

Author(s):  
Rui Rocha ◽  
Jorge Dias

Multi-robot systems (MRS) are sets of intelligent and autonomous mobile robots that are assumed to cooperate in order to carry out collective missions (Arai, Pagello, & Parker, 2002; Cao, Fukunaga, & Kahng, 1997; Rocha, Dias, & Carvalho, 2005). Due to the expendability of individual robots, MRS may substitute humans in risky scenarios (Maimone et al., 1998; Mataric & Sukhatme, 2001; Parker, 1998; Thrun et al. 2003). In other scenarios, they may relieve people from collective tasks that are intrinsically monotonous and repetitive. MRS are the solution to automate missions that are either inherently distributed in time, space, or functionality.

Author(s):  
Muhammad Tahir Khan ◽  
Clarence de Silva

This paper investigates multi-robot coordination for the deployment of autonomous mobile robots in order to carry out a specific task. A key to utilizing of the full potential of cooperative multi-robot systems is effective and efficient multi-robot coordination. The paper presents a novel method of multi-robot coordination based on an Artificial Immune System. The developed approach relies on Jern’s Immune Network Theory, which concerns how an antibody stimulates or suppresses another antibody and recognizes non-self antigens. In the present work, the robots are analogous to antibodies and the robotic task is analogous to an antigen in a biological immune system. Furthermore, stimulation and suppression in an immune system correspond to communication among robots. The artificial immune system will select the appropriate number of antibodies autonomously to eliminate the antigens. The developed method of multirobot coordination is verified by computer simulation.


Robotica ◽  
2013 ◽  
Vol 32 (2) ◽  
pp. 257-277 ◽  
Author(s):  
Seung-kook Yun ◽  
Daniela Rus

SUMMARYThis paper presents decentralized algorithms for coverage with mobile robots on a graph. Coverage is an important capability of multi-robot systems engaged in a number of different applications, including placement for environmental modeling, deployment for maximal quality surveillance, and even coordinated construction. We use distributed vertex substitution for locational optimization and equal mass partitioning, and the controllers minimize the corresponding cost functions. We prove that the proposed controller with two-hop communication guarantees convergence to the locally optimal configuration. We evaluate the algorithms in simulations and also using four mobile robots.


Author(s):  
Noor Abdul Khaleq Zghair ◽  
Ahmed S. Al-Araji

<span lang="EN-US">Recently, autonomous mobile robots have gained popularity in the modern world due to their relevance technology and application in real world situations. The global market for mobile robots will grow significantly over the next 20 years. Autonomous mobile robots are found in many fields including institutions, industry, business, hospitals, agriculture as well as private households for the purpose of improving day-to-day activities and services. The development of technology has increased in the requirements for mobile robots because of the services and tasks provided by them, like rescue and research operations, surveillance, carry heavy objects and so on. Researchers have conducted many works on the importance of robots, their uses, and problems. This article aims to analyze the control system of mobile robots and the way robots have the ability of moving in real-world to achieve their goals. It should be noted that there are several technological directions in a mobile robot industry. It must be observed and integrated so that the robot functions properly: Navigation systems, localization systems, detection systems (sensors) along with motion and kinematics and dynamics systems. All such systems should be united through a control unit; thus, the mission or work of mobile robots are conducted with reliability.</span>


Author(s):  
Yu Zhou

This paper introduces a novel distributed algorithm for deploying multi-robot systems, consisting of mobile robots with onboard sensing and wireless communication of limited ranges, to approach the desired sensory coverage while maintaining communication connection over targeted 2D environments. A virtual potential energy is defined for each mobile robot according to the difference between the actual and desired configurations in the neighborhood of the robot, which generates the actuating force to move the robot towards the desired local coverage. The Rayleigh’s dissipation function is adopted to provide the necessary damping mechanism which maintains the stability of the deployment motion for each robot. The equation of deployment motion for each mobile robot is then derived from the Hamilton’s principle using the method of the variational calculus, which defines the movement of the robot to approach the desired local configuration. The formulation of the variational calculus also provides a convenience way to incorporate the nonholonomic constraint arising in wheeled robots. Since the equation of deployment motion for each robot depends on only the robot’s own kinematic state and its detectable positional relationship with nearby objects, the proposed algorithm decentralizes the multi-robot deployment problem into the motion control of individual robots. Simulation results show the feasibility of the proposed approach in guiding the deployment of multi-robot systems.


Sign in / Sign up

Export Citation Format

Share Document