LePUS

Author(s):  
Epameinondas Gasparis

We present LePUS, a formal language for modeling object oriented (O-O) Design patterns. We demonstrate the language’s unique efficacy in producing precise, concise, generic, and appropriately abstract specifications that effectively model the Gang of Four’s Design patterns. Mathematical logic is used as a main frame of reference: LePUS is defined as a subset of first-order predicate calculus and implementations (programs) are modeled as finite structures in model theory. We also demonstrate the conceptual framework in which the verification of implementations against pattern specifications is possible and our ongoing endeavour to develop effective tool support for LePUS.

2017 ◽  
Vol 10 (3) ◽  
pp. 549-582 ◽  
Author(s):  
RAN LANZET

AbstractThis paper presents an extended version of the Quantified Argument Calculus (Quarc). Quarc is a logic comparable to the first-order predicate calculus. It employs several nonstandard syntactic and semantic devices, which bring it closer to natural language in several respects. Most notably, quantifiers in this logic are attached to one-place predicates; the resulting quantified constructions are then allowed to occupy the argument places of predicates. The version presented here is capable of straightforwardly translating natural-language sentences involving defining clauses. A three-valued, model-theoretic semantics for Quarc is presented. Interpretations in this semantics are not equipped with domains of quantification: they are just interpretation functions. This reflects the analysis of natural-language quantification on which Quarc is based. A proof system is presented, and a completeness result is obtained. The logic presented here is capable of straightforward translation of the classical first-order predicate calculus, the translation preserving truth values as well as entailment. The first-order predicate calculus and its devices of quantification can be seen as resulting from Quarc on certain semantic and syntactic restrictions, akin to simplifying assumptions. An analogous, straightforward translation of Quarc into the first-order predicate calculus is impossible.


1959 ◽  
Vol 2 (1) ◽  
pp. 33-42
Author(s):  
Abraham Robinson

The extended completeness theorem of the predicate calculas of the first order. In section 12, we developed a deductive theory of the first order predicate calculus, while in section II we dealt with the semantic theory of that calculus. We now have to consider the connection between these two theories. We recall that a sentence X can be satisfied by a structure M only if X is defined in M. Given a sentence X (a set of sentences K) we shall say that the structure M is a model of X (of K) if X is (all the sentences of K are) satisfied by M.


1976 ◽  
Vol 41 (1) ◽  
pp. 45-49
Author(s):  
Charles E. Hughes

AbstractA new reduction class is presented for the satisfiability problem for well-formed formulas of the first-order predicate calculus. The members of this class are closed prenex formulas of the form ∀x∀yC. The matrix C is in conjunctive normal form and has no disjuncts with more than three literals, in fact all but one conjunct is unary. Furthermore C contains but one predicate symbol, that being unary, and one function symbol which symbol is binary.


1968 ◽  
Vol 33 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Richmond H. Thomason

In Kripke [8] the first-order intuitionjstic predicate calculus (without identity) is proved semantically complete with respect to a certain model theory, in the sense that every formula of this calculus is shown to be provable if and only if it is valid. Metatheorems of this sort are frequently called weak completeness theorems—the object of the present paper is to extend Kripke's result to obtain a strong completeness theorem for the intuitionistic predicate calculus of first order; i.e., we will show that a formula A of this calculus can be deduced from a set Γ of formulas if and only if Γ implies A. In notes 3 and 5, below, we will indicate how to account for identity, as well. Our proof of the completeness theorem employs techniques adapted from Henkin [6], and makes no use of semantic tableaux; this proof will also yield a Löwenheim-Skolem theorem for the modeling.


1970 ◽  
Vol 38 ◽  
pp. 145-152
Author(s):  
Akira Nakamura

The purpose of this paper is to present a propositional calculus whose decision problem is recursively unsolvable. The paper is based on the following ideas: (1) Using Löwenheim-Skolem’s Theorem and Surányi’s Reduction Theorem, we will construct an infinitely many-valued propositional calculus corresponding to the first-order predicate calculus.(2) It is well known that the decision problem of the first-order predicate calculus is recursively unsolvable.(3) Thus it will be shown that the decision problem of the infinitely many-valued propositional calculus is recursively unsolvable.


2002 ◽  
Vol 8 (3) ◽  
pp. 380-403 ◽  
Author(s):  
Eric Rosen

Model theory is concerned mainly, although not exclusively, with infinite structures. In recent years, finite structures have risen to greater prominence, both within the context of mainstream model theory, e.g., in work of Lachlan, Cherlin, Hrushovski, and others, and with the advent of finite model theory, which incorporates elements of classical model theory, combinatorics, and complexity theory. The purpose of this survey is to provide an overview of what might be called the model theory of finite structures. Some topics in finite model theory have strong connections to theoretical computer science, especially descriptive complexity theory (see [26, 46]). In fact, it has been suggested that finite model theory really is, or should be, logic for computer science. These connections with computer science will, however, not be treated here.It is well-known that many classical results of ‘infinite model theory’ fail over the class of finite structures, including the compactness and completeness theorems, as well as many preservation and interpolation theorems (see [35, 26]). The failure of compactness in the finite, in particular, means that the standard proofs of many theorems are no longer valid in this context. At present, there is no known example of a classical theorem that remains true over finite structures, yet must be proved by substantially different methods. It is generally concluded that first-order logic is ‘badly behaved’ over finite structures.From the perspective of expressive power, first-order logic also behaves badly: it is both too weak and too strong. Too weak because many natural properties, such as the size of a structure being even or a graph being connected, cannot be defined by a single sentence. Too strong, because every class of finite structures with a finite signature can be defined by an infinite set of sentences. Even worse, every finite structure is defined up to isomorphism by a single sentence. In fact, it is perhaps because of this last point more than anything else that model theorists have not been very interested in finite structures. Modern model theory is concerned largely with complete first-order theories, which are completely trivial here.


1969 ◽  
Vol 34 (2) ◽  
pp. 226-252 ◽  
Author(s):  
Jon Barwise

In recent years much effort has gone into the study of languages which strengthen the classical first-order predicate calculus in various ways. This effort has been motivated by the desire to find a language which is(I) strong enough to express interesting properties not expressible by the classical language, but(II) still simple enough to yield interesting general results. Languages investigated include second-order logic, weak second-order logic, ω-logic, languages with generalized quantifiers, and infinitary logic.


Sign in / Sign up

Export Citation Format

Share Document