Complex Systems Modeling by Cellular Automata

Author(s):  
Jirí Kroc ◽  
Peter M.A. Sloot

In recent years, the notion of complex systems proved to be a very useful concept to define, describe, and study various natural phenomena observed in a vast number of scientific disciplines. Examples of scientific disciplines that highly benefit from this concept range from physics, mathematics, and computer science through biology and medicine as well as economy, to social sciences and psychology. Various techniques were developed to describe natural phenomena observed in these complex systems. Among these are artificial life, evolutionary computation, swarm intelligence, neural networks, parallel computing, cellular automata, and many others. In this text, we focus our attention to one of them, i.e. ‘cellular automata’. We present a truly discrete modelling universe, discrete in time, space, and state: Cellular Automata (CAs) (Sloot & Hoekstra, 2007, Kroc, 2007, Sloot, Chopard & Hoekstra, 2004). It is good to emphasize the importance of CAs in solving certain classes of problems, which are not tractable by other techniques. CAs, despite theirs simplicity, are able to describe and reproduce many complex phenomena that are closely related to processes such as self-organization and emergence, which are often observed within the above mentioned scientific disciplines.

2003 ◽  
Vol 06 (03) ◽  
pp. 313-329 ◽  
Author(s):  
TERRY BOSSOMAIER

Complex systems are of vast importance in the practical world as well as presenting many theoretical challenges. The measurement of system complexity is still imprecise. For many systems, their modular construction brings challenges in understanding how modules form and the emergent behavior which may result. In other systems, it is the development of encodings and communication protocols which allow complexity to increase dramatically. We take a broad view of these issues and then consider the nature of the system space which generates complexity. We show examples from cellular automata and applications of neural networks to data mining which suggest that complex systems often occupy simple structured sub-spaces. Finally, we look at the way modularity relates to networks and the implications for understanding human cognitive processing.


2018 ◽  
Vol 6 (3) ◽  
pp. 1-7
Author(s):  
Ekavi Antoniou ◽  
Eleni Vergini ◽  
Peter Groumpos

Complex systems modeling is a rapidly developing research field which incorporates various scientific sectors from bio medicine and energy to economic and social sciences. However, as the systems’ complexity increases pure mathematical modeling techniques prove to be a rather laborious task which demands wasting many resources and in many occasions, could not lead to the desired system response. This realization led researchers turn their attention into the field of computational intelligence; Neural Networks and Fuzzy Logic etc. In this way scientists were able to provide a model of a system which is strongly characterized by fuzziness and uncertainties. Fuzzy Cognitive Maps (FCM) in another methodology which lies in the field of computational intelligence. FCM came as a combination of Neural Networks and Fuzzy Logic and were first introduced by B. Kosko in 1986. All these years they have been applied on a variety of systems such as social, psychological, medical, agricultural, marketing, business management, energy, advertising etc, both for systems modeling and decision-making support systems, with very promising results. Classical FCM approach uses the experts’ knowledge in order to create the initial knowledge base of each system. Based on the experts’ knowledge, the interrelations among the system variables are determined and the system response is defined. Through years, improvements have been made and learning algorithms were embodied in the initial approach. Learning algorithms used data information and history to update the weights (the interconnections) among concepts (variables), contributed to the optimization of FCMs and reached more efficient systems’ response. However, all these decades, researchers have mentioned some weak points as well. In the last years substantial research has been made in order to overcome some of the well-known limitations of the FCM methodology. This paper will apply a revised approach of the Fuzzy Cognitive Maps method on a techno-economic study of an autonomous hybrid system photovoltaic and geothermal energy Specifically, the FCM model of this system includes twenty-five concepts and three of them are considered as outputs, the total system efficiency, the total energy production and the total system cost. The aim of the study is to provide maximum performance with the minimum total cost. To this end results for both the classic and revised approach of the FCM method are provided and discussed. Computational Intelligence and especially Fuzzy Cognitive Maps are a very promising field in modeling complex systems. The latest approaches of the method show that FCM can open new paths towards higher efficiency, more accurate models and effective decision-making results.


2020 ◽  
Vol 29 (4) ◽  
pp. 741-757
Author(s):  
Kateryna Hazdiuk ◽  
◽  
Volodymyr Zhikharevich ◽  
Serhiy Ostapov ◽  
◽  
...  

This paper deals with the issue of model construction of the self-regeneration and self-replication processes using movable cellular automata (MCAs). The rules of cellular automaton (CA) interactions are found according to the concept of equilibrium neighborhood. The method is implemented by establishing these rules between different types of cellular automata (CAs). Several models for two- and three-dimensional cases are described, which depict both stable and unstable structures. As a result, computer models imitating such natural phenomena as self-replication and self-regeneration are obtained and graphically presented.


2006 ◽  
Vol 1 (3) ◽  
pp. 189-202 ◽  
Author(s):  
Ryu Takada ◽  
Daigo Munetaka ◽  
Shoji Kobayashi ◽  
Yoshikazu Suemitsu ◽  
Shigetoshi Nara

Sign in / Sign up

Export Citation Format

Share Document