Use of Nerual Networks for Modeling Energy Consumption in the Residential Sector

Author(s):  
Merih Aydinalp Koksal

This chapter investigates the use of neural networks (NN) for modeling of residential energy consumption. Currently, engineering and conditional demand analysis (CDA) approaches are mainly used for residential energy modeling. The studies on the use of NN for residential energy consumption modeling are limited to estimating the energy use of individual or a group of buildings. Development of a national residential end-use energy consumption model using NN approach is presented in this chapter. The comparative evaluation of the results of the model shows NN approach can be used to accurately predict and categorize the energy consumption in the residential sector as well as the other two approaches. Based on the specific advantages and disadvantages of three models, developing a hybrid model consisting of NN and engineering models is suggested.

2017 ◽  
Vol 11 (4) ◽  
pp. 541-556 ◽  
Author(s):  
Yongxia Ding ◽  
Shuwen Niu

Purpose This paper aims to analyze the internal relationships and tendency of residential energy consumption, income and carbon emissions. Design/methodology/approach Taking 30 provinces of China as the analysis unit and dividing them into two types of urban and rural consumer groups, the panel data model was built. In addition, panel unit root test, panel cointegration test and panel Granger causality test were also used. Findings The results showed that there are long-run equilibrium relationships between the three variables, which show the regular tendency in the spatial process. The elasticity coefficients of residential energy consumption and CO2 emissions vary across the three regions and decline continuously from the western to central and eastern regions. In addition, geographic location is also an important factor on the energy consumption and CO2 emissions in residential sector. Originality/value This paper provides some points for policies on cutting energy use and pollution in residential sector.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3864
Author(s):  
Qiucheng Li ◽  
Jiang Hu ◽  
Bolin Yu

The residential sector has become the second largest energy consumer in China. Urban residential energy consumption (URE) in China is growing rapidly in the process of urbanization. This paper aims to reveal the spatiotemporal dynamic evolution and influencing mechanism of URE in China. The spatiotemporal heterogeneity of URE during 2007–2018 is explored through Kernel density estimation and inequality measures (i.e., Gini coefficient, Theil index, and mean logarithmic deviation). Then, with several advantages over traditional index decomposition analysis approaches, the Generalized Divisia Index Method (GDIM) decomposition is employed to investigate the impacts of eight driving factors on URE. Furthermore, the national and provincial decoupling relationships between URE and residential income increase are studied. It is found that different provinces’ URE present a significant agglomeration effect; the interprovincial inequality in URE increases and then decreases during the study period. The GDIM decomposition results indicate the income effect is the main positive factor driving URE. Besides, urban population, residential area, per capita energy use, and per unit area energy consumption positively influence URE. By contrast, per capita income, energy intensity, and residential density have negative effects on URE. There is evidence that only three decoupling states, i.e., weak decoupling, strong decoupling, and expansive negative decoupling, appear in China during 2007–2018. Specifically, weak decoupling is the dominant state among different regions. Finally, some suggestions are given to speed up the construction of energy-saving cities and promote the decoupling process of residential energy consumption in China. This paper fills some research gaps in urban residential energy research and is important for China’s policymakers.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Naim Jabbour

Data shows residential energy consumption constituting a significant portion of the overall energy end use in the European Union (EU), ranging between 15% and 30%. Furthermore, the EU’s dependency on foreign fossil fuel-based energy imports has been steadily increasing since 1993, constituting approximately 60% of its primary energy. This paper provides an analytical re-view of diverse residential building/energy policies in targeted EU countries, to shed insight on the impact of such policies and measures on energy use and efficiency trends. Accordingly, the adoption of robust residential green and energy efficient building policies in the EU has increased in the past decade. Moreover, data from EU energy efficiency and consumption databases attributes 44% of total energy savings since 2000 to energy upgrades and improvements within the residential sector. Consequently, many EU countries and organizations are continuously evaluating residential building energy consumption patterns to increase the sec-tor’s overall energy performance. To that end, energy efficiency gains in EU households were measured at 1% in 2000 compared to 27.8% in 2016, a 2600% increase. Accordingly, 36 policies have been implemented successfully since 1991 across the EU targeting improvements in residential energy efficiency and reductions in energy use. Moreover, the adoption of National Energy Efficiency Actions Plans (NEEACP) across the EU have been a major driver of energy savings and energy efficiency. Most energy efficiency plans have followed a holistic multi-dimensional approach targeting the following areas, legislative actions, financial incentives, fiscal tax exemptions, and public education and awareness programs and campaigns. These measures and policy instruments have cumulatively generated significant energy savings and measurable improvements in energy performance across the EU since their inception. As a result, EU residential energy consumption trends show a consistent decrease over the past decade. The purpose of this analysis is to explore, examine, and compare the various green building and energy-related policies in the EU, highlighting some of the more robust and progressive aspects of such policies. The paper will also analyze the multiple policies and guidelines across targeted European nations. Lastly, the study will assess the status of green residential building policies in Lebanon, drawing from the comprehensive European measures, in order to recommend a comprehensive set of guidelines to advance energy policies and building practices in the country. Keywords: Building Policies; Residential Energy Patterns; Residential Energy Consumption; Energy Savings


2013 ◽  
Vol 291-294 ◽  
pp. 1365-1369
Author(s):  
Jing Zhang ◽  
Ru Guo

Most Chinese cities are experiencing rapid urbanization and economic growth. It is needed to explore how a city’s energy system evolves and how it can be altered to reduce carbon emissions. This paper analyzed energy consumption and related CO2 emissions in Beijing and Shanghai. A rapid growth in energy consumption during the last two decades is evident. Shanghai presents higher energy intensity than Beijing, mainly due to the larger share of the secondary industry in economy. Energy consumption by the residential sector is higher in Beijing, despite a larger population in Shanghai. The CO2 emissions by the end-use energy in 2010 are 152 and 259 million ton in Beijing and Shanghai, respectively. Electricity usage presents an important share of energy consumption and CO2 emissions. Thus, development of renewable energy for electricity generation and improvement of the technologies in thermal power plants are important to reduce the future carbon emissions.


Author(s):  
Suchismita Bhattacharjee ◽  
Georg Reichard

Energy consumption in the United States’ residential sector has been marked by a steady growth over the past few decades, in spite of the implementation of several energy efficiency policies. To develop effective energy policies for the residential sector, it is of utmost importance to study the various factors affecting residential energy consumption. Earlier studies have identified and classified various individual factors responsible for the increment in household energy consumption, and have also analyzed the effect of socio-economic factors such as standard-of-living and income on overall household energy consumption. This research study identifies the socio-economic factors affecting household energy consumption. Potential reasons for the variation in residential energy efficiency consumption have been investigated in previous studies that only represent viewpoints of investigators analyzing specific problems. Additionally, a comprehensive review of literature failed to reveal existing research that had systematically explored the interdependencies among the various factors that could possibly affect residential energy consumption to give an overall perspective of these factors. Widely used academic and scholarly scientific databases were employed by two independent investigators to search for original research investigations. A total of more than 200 research studies were found by the investigators, with almost ninety percent agreement between the two investigators. Based on the inclusion and exclusion criteria of this research study the authors systematically reviewed 51 prominent research studies to create a comprehensive list of factors affecting residential energy consumption. The results are discussed in this review.


Sign in / Sign up

Export Citation Format

Share Document