Cross-Platform Microarray Data Integration Combining Meta-Analysis and Gene Set Enrichment Analysis

Author(s):  
Jian Yu ◽  
Jun Wu ◽  
Miaoxin Li ◽  
Yajun Yi ◽  
Yu Shyr ◽  
...  

Integrative analysis of microarray data has been proven as a more reliable approach to deciphering molecular mechanisms underlying biological studies. Traditional integration such as meta-analysis is usually gene-centered. Recently, gene set enrichment analysis (GSEA) has been widely applied to bring gene-level interpretation to pathway-level. GSEA is an algorithm focusing on whether an a priori defined set of genes shows statistically significant differences between two biological states. However, GSEA does not support integrating multiple microarray datasets generated from different studies. To overcome this, the improved version of GSEA, ASSESS, is more applicable, after necessary modifications. By making proper combined use of meta-analysis, GSEA, and modified ASSESS, this chapter reports two workflow pipelines to extract consistent expression pattern change at pathway-level, from multiple microarray datasets generated by the same or different microarray production platforms, respectively. Such strategies amplify the advantage and overcome the disadvantage than if using each method individually, and may achieve a more comprehensive interpretation towards a biological theme based on an increased sample size. With further network analysis, it may also allow an overview of cross-talking pathways based on statistical integration of multiple gene expression studies. A web server where one of the pipelines is implemented is available at: http://lifecenter.sgst.cn/mgsea//home.htm.

2013 ◽  
pp. 570-585
Author(s):  
Jian Yu ◽  
Jun Wu ◽  
Miaoxin Li ◽  
Yajun Yi ◽  
Yu Shyr ◽  
...  

Integrative analysis of microarray data has been proven as a more reliable approach to deciphering molecular mechanisms underlying biological studies. Traditional integration such as meta-analysis is usually gene-centered. Recently, gene set enrichment analysis (GSEA) has been widely applied to bring gene-level interpretation to pathway-level. GSEA is an algorithm focusing on whether an a priori defined set of genes shows statistically significant differences between two biological states. However, GSEA does not support integrating multiple microarray datasets generated from different studies. To overcome this, the improved version of GSEA, ASSESS, is more applicable, after necessary modifications. By making proper combined use of meta-analysis, GSEA, and modified ASSESS, this chapter reports two workflow pipelines to extract consistent expression pattern change at pathway-level, from multiple microarray datasets generated by the same or different microarray production platforms, respectively. Such strategies amplify the advantage and overcome the disadvantage than if using each method individually, and may achieve a more comprehensive interpretation towards a biological theme based on an increased sample size. With further network analysis, it may also allow an overview of cross-talking pathways based on statistical integration of multiple gene expression studies. A web server where one of the pipelines is implemented is available at: http://lifecenter.sgst.cn/mgsea//home.htm.


2011 ◽  
Vol 10 (4) ◽  
pp. 3856-3887 ◽  
Author(s):  
Q.Y. Ning ◽  
J.Z. Wu ◽  
N. Zang ◽  
J. Liang ◽  
Y.L. Hu ◽  
...  

Author(s):  
Ishtiaque Ahammad

Cocaine addiction is a global health problem that causes substantial damage to the health of addicted individuals around the world. Dopamine synthesizing neurons in the brain play a vital role in the addiction to cocaine. But the underlying molecular mechanisms that help cocaine exert its addictive effect have not been very well understood. Bioinformatics can be a useful tool in the attempt to broaden our understanding in this area. In the present study, Gene Set Enrichment Analysis (GSEA) was carried out on the upregulated genes from a dataset of Dopamine synthesizing neurons of post-mortem human brain of cocaine addicts. As a result of this analysis, 3 miRNAs have been identified as having significant influence on transcription of the upregulated genes. These 3 miRNAs hold therapeutic potential for the treatment of cocaine addiction.


2020 ◽  
Author(s):  
Xiaomei Lei ◽  
Zhijun Feng ◽  
Xiaojun Wang ◽  
Xiaodong He

Abstract Background. Exploring alterations in the host transcriptome following SARS-CoV-2 infection is not only highly warranted to help us understand molecular mechanisms of the disease, but also provide new prospective for screening effective antiviral drugs, finding new therapeutic targets, and evaluating the risk of systemic inflammatory response syndrome (SIRS) early.Methods. We downloaded three gene expression matrix files from the Gene Expression Omnibus (GEO) database, and extracted the gene expression data of the SARS-CoV-2 infection and non-infection in human samples and different cell line samples, and then performed gene set enrichment analysis (GSEA), respectively. Thereafter, we integrated the results of GSEA and obtained co-enriched gene sets and co-core genes in three various microarray data. Finally, we also constructed a protein-protein interaction (PPI) network and molecular modules for co-core genes and performed Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis for the genes from modules to clarify their possible biological processes and underlying signaling pathway. Results. A total of 11 co-enriched gene sets were identified from the three various microarray data. Among them, 10 gene sets were activated, and involved in immune response and inflammatory reaction. 1 gene set was suppressed, and participated in cell cycle. The analysis of molecular modules showed that 2 modules might play a vital role in the pathogenic process of SARS-CoV-2 infection. The KEGG enrichment analysis showed that genes from module one enriched in signaling pathways related to inflammation, but genes from module two enriched in signaling of cell cycle and DNA replication. Particularly, necroptosis signaling, a newly identified type of programmed cell death that differed from apoptosis, was also determined in our findings. Additionally, for patients with SARS-CoV-2 infection, genes from module one showed a relatively high-level expression while genes from module two showed low-level. Conclusions. We identified two molecular modules were used to assess severity and predict the prognosis of the patients with SARS-CoV-2 infection. In addition, these results provide a unique opportunity to explore more molecular pathways as new potential targets on therapy in COVID 19.


2021 ◽  
Author(s):  
Yannian Luo ◽  
Juan Xu ◽  
Mingzhen Zhou ◽  
Xiaomei Lei ◽  
Wen Cao ◽  
...  

Abstract Background. Exploring alterations in the host transcriptome following SARS-CoV-2 infection is not only highly warranted to help us understand molecular mechanisms of the disease, but also provide new prospective for screening effective antiviral drugs, finding new therapeutic targets, and evaluating the risk of systemic inflammatory response syndrome (SIRS) early.Methods. We downloaded three gene expression matrix files from the Gene Expression Omnibus (GEO) database, and extracted the gene expression data of the SARS-CoV-2 infection and non-infection in human samples and different cell line samples, and then performed gene set enrichment analysis (GSEA), respectively. Thereafter, we integrated the results of GSEA and obtained co-enriched gene sets and co-core genes in three various microarray data. Finally, we also constructed a protein-protein interaction (PPI) network and molecular modules for co-core genes and performed Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis for the genes from modules to clarify their possible biological processes and underlying signaling pathway. Results. A total of 11 co-enriched gene sets were identified from the three various microarray data. Among them, 10 gene sets were activated, and involved in immune response and inflammatory reaction. 1 gene set was suppressed, and participated in cell cycle. The analysis of molecular modules showed that 2 modules might play a vital role in the pathogenic process of SARS-CoV-2 infection. The KEGG enrichment analysis showed that genes from module one enriched in signaling pathways related to inflammation, but genes from module two enriched in signaling of cell cycle and DNA replication. Particularly, necroptosis signaling, a newly identified type of programmed cell death that differed from apoptosis, was also determined in our findings. Additionally, for patients with SARS-CoV-2 infection, genes from module one showed a relatively high-level expression while genes from module two showed low-level. Conclusions. We identified two molecular modules were used to assess severity and predict the prognosis of the patients with SARS-CoV-2 infection. In addition, these results provide a unique opportunity to explore more molecular pathways as new potential targets on therapy in COVID 19.


2018 ◽  
Author(s):  
Ishtiaque Ahammad

<p>Cocaine addiction is a global health problem that causes substantial damage to the health of addicted individuals around the world. Dopamine synthesizing neurons in the brain play a vital role in the addiction to cocaine. But the underlying molecular mechanisms that help cocaine exert its addictive effect have not been very well understood. Bioinformatics can be a useful tool in the attempt to broaden our understanding in this area. In the present study, Gene Set Enrichment Analysis (GSEA) was carried out on the upregulated genes from a dataset of Dopamine synthesizing neurons of post-mortem human brain of cocaine addicts. As a result of this analysis, 3 miRNAs have been identified as having significant influence on transcription of the upregulated genes. These 3 miRNAs hold therapeutic potential for the treatment of cocaine addiction. </p>


2013 ◽  
Vol 50 (2) ◽  
pp. 324-332 ◽  
Author(s):  
Yanyan Tang ◽  
Wenwu He ◽  
Yunfei Wei ◽  
Zhanli Qu ◽  
Jinming Zeng ◽  
...  

2018 ◽  
Author(s):  
Ishtiaque Ahammad

AbstractCocaine addiction is a global health problem that causes substantial damage to the health of addicted individuals around the world. Dopamine synthesizing neurons in the brain play a vital role in the addiction to cocaine. But the underlying molecular mechanisms that help cocaine exert its addictive effect have not been very well understood. Bioinformatics can be a useful tool in the attempt to broaden our understanding in this area. In the present study, Gene Set Enrichment Analysis (GSEA) was carried out on the upregulated genes from a dataset of Dopamine synthesizing neurons of post-mortem human brain of cocaine addicts. As a result of this analysis, 3 miRNAs have been identified as having significant influence on transcription of the upregulated genes. These 3 miRNAs hold therapeutic potential for the treatment of cocaine addiction.


Sign in / Sign up

Export Citation Format

Share Document