In Silico Prediction of Blood Brain Barrier Permeability

Author(s):  
Zhi Wang ◽  
Aixia Yan ◽  
Jiaxuan Li

The ability of penetration of the blood-brain barrier is an important property for the development of Central Nervous System drugs, which is commonly expressed by logBB (logBB = log(Cbrain/Cblood). In this work, a support vector machine was used to build quantitative models of blood brain barrier permeability. Molecular descriptors for 182 compounds were calculated by ADRIANA.Code and 12 descriptors were selected using the automatic variable selection function in Weka. Based on two common physicochemical descriptors (xlogP and Topological Polar Surface Area (TPSA)) and 10 2D property autocorrelation descriptors on atom pair properties, an SVM regression model was built. The built model was validated by an external test set. The reliable predictions of the test set demonstrate that this model performs well and can be used for estimation of logBB values for drug and drug-like molecules.

2018 ◽  
Vol 25 (9) ◽  
pp. 1073-1089 ◽  
Author(s):  
Santiago Vilar ◽  
Eduardo Sobarzo-Sanchez ◽  
Lourdes Santana ◽  
Eugenio Uriarte

Background: Blood-brain barrier transport is an important process to be considered in drug candidates. The blood-brain barrier protects the brain from toxicological agents and, therefore, also establishes a restrictive mechanism for the delivery of drugs into the brain. Although there are different and complex mechanisms implicated in drug transport, in this review we focused on the prediction of passive diffusion through the blood-brain barrier. Methods: We elaborated on ligand-based and structure-based models that have been described to predict the blood-brain barrier permeability. Results: Multiple 2D and 3D QSPR/QSAR models and integrative approaches have been published to establish quantitative and qualitative relationships with the blood-brain barrier permeability. We explained different types of descriptors that correlate with passive diffusion along with data analysis methods. Moreover, we discussed the applicability of other types of molecular structure-based simulations, such as molecular dynamics, and their implications in the prediction of passive diffusion. Challenges and limitations of experimental measurements of permeability and in silico predictive methods were also described. Conclusion: Improvements in the prediction of blood-brain barrier permeability from different types of in silico models are crucial to optimize the process of Central Nervous System drug discovery and development.


Sign in / Sign up

Export Citation Format

Share Document