A Biomimetic Adaptive Algorithm and Micropower Circuit Architecture for Implantable Neural Decoders

2011 ◽  
pp. 581-619
Author(s):  
Benjamin I. Rapoport ◽  
Rahul Sarpeshkar

Algorithmically and energetically efficient computational architectures that operate in real time are essential for clinically useful neural prosthetic devices. Such architectures decode raw neural data to obtain direct motor control signals for external devices. They can also perform data compression and vastly reduce the bandwidth and consequently power expended in wireless transmission of raw data from implantable brain–machine interfaces. We describe a biomimetic algorithm and micropower analog circuit architecture for decoding neural cell ensemble signals. The decoding algorithm implements a continuous-time artificial neural network, using a bank of adaptive linear filters with kernels that emulate synaptic dynamics. The filters transform neural signal inputs into control-parameter outputs, and can be tuned automatically in an on-line learning process. We demonstrate that the algorithm is suitable for decoding both local field potentials and mean spike rates. We also provide experimental validation of our system, decoding discrete reaching decisions from neuronal activity in the macaque parietal cortex, and decoding continuous head direction trajectories from cell ensemble activity in the rat thalamus. We further describe a method of mapping the algorithm to a highly parallel circuit architecture capable of continuous learning and real-time operation. Circuit simulations of a subthreshold analog CMOS instantiation of the architecture reveal that its performance is comparable to the predicted performance of our decoding algorithm for a system decoding three control parameters from 100 neural input channels at microwatt levels of power consumption. While the algorithm and decoding architecture are suitable for analog or digital implementation, we indicate how a micropower analog system trades some algorithmic programmability for reductions in power and area consumption that could facilitate implantation of a neural decoder within the brain. We also indicate how our system can compress neural data more than 100,000-fold, greatly reducing the power needed for wireless telemetry of neural data.

Author(s):  
Benjamin I. Rapoport ◽  
Rahul Sarpeshkar

Algorithmically and energetically efficient computational architectures that operate in real time are essential for clinically useful neural prosthetic devices. Such architectures decode raw neural data to obtain direct motor control signals for external devices. They can also perform data compression and vastly reduce the bandwidth and consequently power expended in wireless transmission of raw data from implantable brain–machine interfaces. We describe a biomimetic algorithm and micropower analog circuit architecture for decoding neural cell ensemble signals. The decoding algorithm implements a continuous-time artificial neural network, using a bank of adaptive linear filters with kernels that emulate synaptic dynamics. The filters transform neural signal inputs into control-parameter outputs, and can be tuned automatically in an on-line learning process. We demonstrate that the algorithm is suitable for decoding both local field potentials and mean spike rates. We also provide experimental validation of our system, decoding discrete reaching decisions from neuronal activity in the macaque parietal cortex, and decoding continuous head direction trajectories from cell ensemble activity in the rat thalamus. We further describe a method of mapping the algorithm to a highly parallel circuit architecture capable of continuous learning and real-time operation. Circuit simulations of a subthreshold analog CMOS instantiation of the architecture reveal that its performance is comparable to the predicted performance of our decoding algorithm for a system decoding three control parameters from 100 neural input channels at microwatt levels of power consumption. While the algorithm and decoding architecture are suitable for analog or digital implementation, we indicate how a micropower analog system trades some algorithmic programmability for reductions in power and area consumption that could facilitate implantation of a neural decoder within the brain. We also indicate how our system can compress neural data more than 100,000-fold, greatly reducing the power needed for wireless telemetry of neural data.


2015 ◽  
Vol 24 (6) ◽  
pp. 1703-1711 ◽  
Author(s):  
Rosana Alves Dias ◽  
Filipe Serra Alves ◽  
Margaret Costa ◽  
Helder Fonseca ◽  
Jorge Cabral ◽  
...  

2018 ◽  
Author(s):  
J. I. Alvarez Claramunt ◽  
P. E. Bizzotto ◽  
F. Sapag ◽  
E. Ferrigno ◽  
J. L. Barros ◽  
...  

2017 ◽  
Vol 10 (2) ◽  
pp. 169-178 ◽  
Author(s):  
Shouhei Kidera ◽  
Luz Maria Neira ◽  
Barry D. Van Veen ◽  
Susan C. Hagness

Microwave ablation is widely recognized as a promising minimally invasive tool for treating cancer. Real-time monitoring of the dimensions of the ablation zone is indispensable for ensuring an effective and safe treatment. In this paper, we propose a microwave imaging algorithm for monitoring the evolution of the ablation zone. Our proposed algorithm determines the boundary of the ablation zone by exploiting the time difference of arrival (TDOA) between signals received before and during the ablation at external antennas surrounding the tissue, using the interstitial ablation antenna as the transmitter. A significant advantage of this method is that it requires few assumptions about the dielectric properties of the propagation media. Also the simplicity of the signal processing, wherein the TDOA is determined from a cross-correlation calculation, allows real-time monitoring and provides robust performance in the presence of noise. We investigate the performance of this approach for the application of breast tumor ablation. We use simulated array measurements obtained from finite-difference time-domain simulations of magnetic resonance imaging-derived numerical breast phantoms. The results demonstrate that our proposed method offers the potential to achieve millimeter-order accuracy and real-time operation in estimating the boundary of the ablation zone in heterogeneous and dispersive breast tissue.


2017 ◽  
Vol 5 (5) ◽  
pp. 320-325
Author(s):  
Ahmad T. Jaiad ◽  
Hamzah Sabr Ghayyib

Water is the most precious and valuable because it’s a basic need of all the human beings but, now a day water supply department are facing problem in real time operation this is because less amount of water in resources due to less rain fall. With increase in Population, urban residential areas have increased because of this reasons water has become a crucial problem which affects the problem of water distribution, interrupted water supply, water conservation, water consumption and also the water quality so, to overcome water supply related problems and make system efficient there is need of proper monitoring and controlling system. In this project, we are focusing on continuous and real time monitoring of water supply in IOT platform. Water supply with continuous monitoring makes a proper distribution so that, we can have a record of available amount of water in tanks, flow rate, abnormality in distribution line. Internet of things is nothing but the network of physical objects embedded with electronics, sensors, software, and network connectivity. Monitoring can be done from anywhere as central office. Using Adafruit as free sever data continuously pushed on cloud so we can see data in real time operation. Using different sensors with controller and raspberry pi as Mini computer can monitor data and also control operation from cloud with efficient client server communication.


Sign in / Sign up

Export Citation Format

Share Document