Hardware Trends and Implications for Programming Models

Author(s):  
Gabriele Jost ◽  
Alice E. Koniges

The upcoming years bring new challenges in high-performance computing (HPC) technology. Fundamental changes in the building blocks of HPC hardware are forcing corresponding changes in programming models to effectively use these new architectures. The changes in store for HPC will rival the vector to massively parallel transition that scientific and engineering codes and methodologies endured several years ago. We describe some of the upcoming trends in hardware designs, and suggest ways in which software and programming models will advance accordingly.

2014 ◽  
Author(s):  
Mehdi Gilaki ◽  
Ilya Avdeev

In this study, we have investigated feasibility of using commercial explicit finite element code LS-DYNA on massively parallel super-computing cluster for accurate modeling of structural impact on battery cells. Physical and numerical lateral impact tests have been conducted on cylindrical cells using a flat rigid drop cart in a custom-built drop test apparatus. The main component of cylindrical cell, jellyroll, is a layered spiral structure which consists of thin layers of electrodes and separator. Two numerical approaches were considered: (1) homogenized model of the cell and (2) heterogeneous (full) 3-D cell model. In the first approach, the jellyroll was considered as a homogeneous material with an effective stress-strain curve obtained through experiments. In the second model, individual layers of anode, cathode and separator were accounted for in the model, leading to extremely complex and computationally expensive finite element model. To overcome limitations of desktop computers, high-performance computing (HPC) techniques on a HPC cluster were needed in order to get the results of transient simulations in a reasonable solution time. We have compared two HPC methods used for this model is shared memory parallel processing (SMP) and massively parallel processing (MPP). Both the homogeneous and the heterogeneous models were considered for parallel simulations utilizing different number of computational nodes and cores and the performance of these models was compared. This work brings us one step closer to accurate modeling of structural impact on the entire battery pack that consists of thousands of cells.


2019 ◽  
Author(s):  
Andreas Müller ◽  
Willem Deconinck ◽  
Christian Kühnlein ◽  
Gianmarco Mengaldo ◽  
Michael Lange ◽  
...  

Abstract. In the simulation of complex multi-scale flow problems, such as those arising in weather and climate modelling, one of the biggest challenges is to satisfy operational requirements in terms of time-to-solution and energy-to-solution yet without compromising the accuracy and stability of the calculation. These competing factors require the development of state-of-the-art algorithms that can optimally exploit the targeted underlying hardware and efficiently deliver the extreme computational capabilities typically required in operational forecast production. These algorithms should (i) minimise the energy footprint along with the time required to produce a solution, (ii) maintain a satisfying level of accuracy, (iii) be numerically stable and resilient, in case of hardware or software failure. The European Centre for Medium Range Weather Forecasts (ECMWF) is leading a project called ESCAPE (Energy-efficient SCalable Algorithms for weather Prediction on Exascale supercomputers) which is funded by Horizon 2020 (H2020) under initiative Future and Emerging Technologies in High Performance Computing (FET-HPC). The goal of the ESCAPE project is to develop a sustainable strategy to evolve weather and climate prediction models to next-generation computing technologies. The project partners incorporate the expertise of leading European regional forecasting consortia, university research, experienced high-performance computing centres and hardware vendors. This paper presents an overview of results obtained in the ESCAPE project in which weather prediction have been broken down into smaller building blocks called dwarfs. The participating weather prediction models are: IFS (Integrated Forecasting System), ALARO – a combination of AROME (Application de la Recherche à l'Opérationnel a Meso-Echelle) and ALADIN (Aire Limitée Adaptation Dynamique Développement International) and COSMO-EULAG – a combination of COSMO (Consortium for Small-scale Modeling) and EULAG (Eulerian/semi-Lagrangian fluid solver). The dwarfs are analysed and optimised in terms of computing performance for different hardware architectures (mainly Intel Skylake CPUs, NVIDIA GPUs, Intel Xeon Phi). The ESCAPE project includes the development of new algorithms that are specifically designed for better energy efficiency and improved portability through domain specific languages. In addition, the modularity of the algorithmic framework, naturally allows testing different existing numerical approaches, and their interplay with the emerging heterogeneous hardware landscape. Throughout the paper, we will compare different numerical techniques to solve the main building blocks that constitute weather models, in terms of energy efficiency and performance, on a variety of computing technologies.


Author(s):  
Al Geist ◽  
Daniel A Reed

Commodity clusters revolutionized high-performance computing when they first appeared two decades ago. As scale and complexity have grown, new challenges in reliability and systemic resilience, energy efficiency and optimization and software complexity have emerged that suggest the need for re-evaluation of current approaches. This paper reviews the state of the art and reflects on some of the challenges likely to be faced when building trans-petascale computing systems, using insights and perspectives drawn from operational experience and community debates.


Sign in / Sign up

Export Citation Format

Share Document