Image Focus Measure Based on Energy of High Frequency Components in S-Transform

Author(s):  
Muhammad Tariq Mahmood ◽  
Tae-Sun Choi

Focus measure computes sharpness or high frequency contents in an image. It plays an important role in many image processing and computer vision applications such as shape from focus (SFF) techniques and multi-focus image fusion algorithms. In this chapter, we discuss different focus measures in spatial as well as in the transform domains. In addition, we suggest a novel focus measure in S-transform domain, which is based on the energy of high frequency components. A localized spectrum, by using variable window size, provides a more accurate method of measuring image sharpness as compared to other focus measures proposed in spectral domains. An optimal focus measure is obtained by selecting an appropriate frequency dependent window width. The performance of the proposed focus measure is compared with those of existing focus measures in terms of three dimensional shape recovery and all-in-focus image generation. Experimental results demonstrate the effectiveness of the proposed focus measure.

2013 ◽  
pp. 162-180
Author(s):  
Muhammad Tariq Mahmood ◽  
Tae-Sun Choi

Focus measure computes sharpness or high frequency contents in an image. It plays an important role in many image processing and computer vision applications such as shape from focus (SFF) techniques and multi-focus image fusion algorithms. In this chapter, we discuss different focus measures in spatial as well as in the transform domains. In addition, we suggest a novel focus measure in S-transform domain, which is based on the energy of high frequency components. A localized spectrum, by using variable window size, provides a more accurate method of measuring image sharpness as compared to other focus measures proposed in spectral domains. An optimal focus measure is obtained by selecting an appropriate frequency dependent window width. The performance of the proposed focus measure is compared with those of existing focus measures in terms of three dimensional shape recovery and all-in-focus image generation. Experimental results demonstrate the effectiveness of the proposed focus measure.


2010 ◽  
Vol 35 (8) ◽  
pp. 1272 ◽  
Author(s):  
Muhammad Tariq Mahmood ◽  
Tae-Sun Choi

Author(s):  
Priya R. Kamath ◽  
Kedarnath Senapati ◽  
P. Jidesh

Speckles are inherent to SAR. They hide and undermine several relevant information contained in the SAR images. In this paper, a despeckling algorithm using the shrinkage of two-dimensional discrete orthonormal S-transform (2D-DOST) coefficients in the transform domain along with shock filter is proposed. Also, an attempt has been made as a post-processing step to preserve the edges and other details while removing the speckle. The proposed strategy involves decomposing the SAR image into low and high-frequency components and processing them separately. A shock filter is used to smooth out the small variations in low-frequency components, and the high-frequency components are treated with a shrinkage of 2D-DOST coefficients. The edges, for enhancement, are detected using a ratio-based edge detection algorithm. The proposed method is tested, verified, and compared with some well-known models on C-band and X-band SAR images. A detailed experimental analysis is illustrated.


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1362
Author(s):  
Hui Wan ◽  
Xianlun Tang ◽  
Zhiqin Zhu ◽  
Weisheng Li

Multi-focus image fusion is an important method used to combine the focused parts from source multi-focus images into a single full-focus image. Currently, to address the problem of multi-focus image fusion, the key is on how to accurately detect the focus regions, especially when the source images captured by cameras produce anisotropic blur and unregistration. This paper proposes a new multi-focus image fusion method based on the multi-scale decomposition of complementary information. Firstly, this method uses two groups of large-scale and small-scale decomposition schemes that are structurally complementary, to perform two-scale double-layer singular value decomposition of the image separately and obtain low-frequency and high-frequency components. Then, the low-frequency components are fused by a rule that integrates image local energy with edge energy. The high-frequency components are fused by the parameter-adaptive pulse-coupled neural network model (PA-PCNN), and according to the feature information contained in each decomposition layer of the high-frequency components, different detailed features are selected as the external stimulus input of the PA-PCNN. Finally, according to the two-scale decomposition of the source image that is structure complementary, and the fusion of high and low frequency components, two initial decision maps with complementary information are obtained. By refining the initial decision graph, the final fusion decision map is obtained to complete the image fusion. In addition, the proposed method is compared with 10 state-of-the-art approaches to verify its effectiveness. The experimental results show that the proposed method can more accurately distinguish the focused and non-focused areas in the case of image pre-registration and unregistration, and the subjective and objective evaluation indicators are slightly better than those of the existing methods.


2013 ◽  
Vol 753-755 ◽  
pp. 3051-3055
Author(s):  
Kang Song ◽  
Jun Bi Liao ◽  
Yi Tong Dou

According to Wiener-Khintchine theorem, autocorrelation function of an image was proved that can be used as sharpness evaluation function. An image sharpness index k is proposed and the relationship between content of high frequency components of an image and the width d of its autocorrelation function main lobe was constructed through Fourier transformation. The direct ration relationship between the sharpness index k of an image and the width d of its autocorrelation function main lobe was also validated by experiments. Theoretical analysis and experiment results indicate that d increases when an image is blurry and d decreases when the image is clear.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Erinc Karatoprak ◽  
Serhat Seker

This paper proposes an improved Empirical Mode Decomposition (EMD) method by using variable window size median filters during the Intrinsic Mode Functions (IMFs) generation. Compared to the traditional EMD, the improved EMD, namely, Median EMD (MEMD), helps to reduce mode-mixing providing an improvement in terms of separating the fundamental frequencies per IMF. The MEMD method applies the EMD to the signal and then applies a variable window size median filter to the resulting IMFs. A narrow window is used for high frequency components where a broader window is used for the lower frequency components. The filtered IMFs are then summed again and another round of EMD is applied to yield the improved MEMD IMFs. A test setup for accelerated aging of bearings in induction motors is used for the comparison of the traditional and the improved EMD methods with the goal of finding potential bearing defects in an induction motor. The potential defect at the early stage is compared with the faulty state and is used to extract the characteristics of the bearing damage that develops gradually. Comparing the EMD and MEMD, it is seen that MEMD is an improvement to EMD in terms of mode-mixing problem. The MEMD method demonstrated to have better performance compared to the traditional EMD for the extraction of the fault features from the healthy operational state of the motor.


Author(s):  
G. Y. Fan ◽  
J. M. Cowley

It is well known that the structure information on the specimen is not always faithfully transferred through the electron microscope. Firstly, the spatial frequency spectrum is modulated by the transfer function (TF) at the focal plane. Secondly, the spectrum suffers high frequency cut-off by the aperture (or effectively damping terms such as chromatic aberration). While these do not have essential effect on imaging crystal periodicity as long as the low order Bragg spots are inside the aperture, although the contrast may be reversed, they may change the appearance of images of amorphous materials completely. Because the spectrum of amorphous materials is continuous, modulation of it emphasizes some components while weakening others. Especially the cut-off of high frequency components, which contribute to amorphous image just as strongly as low frequency components can have a fundamental effect. This can be illustrated through computer simulation. Imaging of a whitenoise object with an electron microscope without TF limitation gives Fig. 1a, which is obtained by Fourier transformation of a constant amplitude combined with random phases generated by computer.


Author(s):  
M. T. Postek ◽  
A. E. Vladar

Fully automated or semi-automated scanning electron microscopes (SEM) are now commonly used in semiconductor production and other forms of manufacturing. The industry requires that an automated instrument must be routinely capable of 5 nm resolution (or better) at 1.0 kV accelerating voltage for the measurement of nominal 0.25-0.35 micrometer semiconductor critical dimensions. Testing and proving that the instrument is performing at this level on a day-by-day basis is an industry need and concern which has been the object of a study at NIST and the fundamentals and results are discussed in this paper.In scanning electron microscopy, two of the most important instrument parameters are the size and shape of the primary electron beam and any image taken in a scanning electron microscope is the result of the sample and electron probe interaction. The low frequency changes in the video signal, collected from the sample, contains information about the larger features and the high frequency changes carry information of finer details. The sharper the image, the larger the number of high frequency components making up that image. Fast Fourier Transform (FFT) analysis of an SEM image can be employed to provide qualitiative and ultimately quantitative information regarding the SEM image quality.


2019 ◽  
Vol 14 (7) ◽  
pp. 658-666
Author(s):  
Kai-jian Xia ◽  
Jian-qiang Wang ◽  
Jian Cai

Background: Lung cancer is one of the common malignant tumors. The successful diagnosis of lung cancer depends on the accuracy of the image obtained from medical imaging modalities. Objective: The fusion of CT and PET is combining the complimentary and redundant information both images and can increase the ease of perception. Since the existing fusion method sare not perfect enough, and the fusion effect remains to be improved, the paper proposes a novel method called adaptive PET/CT fusion for lung cancer in Piella framework. Methods: This algorithm firstly adopted the DTCWT to decompose the PET and CT images into different components, respectively. In accordance with the characteristics of low-frequency and high-frequency components and the features of PET and CT image, 5 membership functions are used as a combination method so as to determine the fusion weight for low-frequency components. In order to fuse different high-frequency components, we select the energy difference of decomposition coefficients as the match measure, and the local energy as the activity measure; in addition, the decision factor is also determined for the high-frequency components. Results: The proposed method is compared with some of the pixel-level spatial domain image fusion algorithms. The experimental results show that our proposed algorithm is feasible and effective. Conclusion: Our proposed algorithm can better retain and protrude the lesions edge information and the texture information of lesions in the image fusion.


Sign in / Sign up

Export Citation Format

Share Document