Computational Space, Time and Quantum Mechanics

Author(s):  
Michael Nicolaidis

We start this chapter by introducing an ultimate limit of knowledge: as observers that are part of the universe we have no access on information concerning the fundamental nature of the elementary entities (particles) composing the universe but only on information concerning their behaviour. Then, we use this limit to develop a vision of the universe in which the behaviour of particles is the result of a computation-like process (not in the restricted sense of Turing machine) performed by meta-objects and in which space and time are also engendered by this computation. In this vision, the structure of space-time (e.g. Galilean, Lorentzian, …) is determined by the form of the laws of interactions, important philosophical questions related with the space-time structure of special relativity are resolved, the contradiction between the non-locality of quantum systems and the reversal of the temporal order of events (encountered in special relativity when we change inertial frames) is conciliated, and the “paradoxes” related with the “strange” behaviour of quantum systems (non-determinism, quantum superposition, non-locality) are resolved.

2003 ◽  
Vol 12 (02) ◽  
pp. 299-315 ◽  
Author(s):  
J. KOWALSKI-GLIKMAN ◽  
S. NOWAK

Doubly Special Relativity (DSR) theory is a recently proposed theory with two observer-independent scales (of velocity and mass), which is to describe a kinematic structure underlining the theory of Quantum Gravity. We observe that there are infinitely many DSR constructions of the energy–momentum sector, each of whose can be promoted to the κ-Poincaré quantum (Hopf) algebra. Then we use the co-product of this algebra and the Heisenberg double construction of κ-deformed phase space in order to derive the non-commutative space–time structure and the description of the whole of DSR phase space. Next we show that contrary to the ambiguous structure of the energy momentum sector, the space–time of the DSR theory is unique and related to the theory with non-commutative space–time proposed long ago by Snyder. This theory provides non-commutative version of Minkowski space–time enjoying ordinary Lorentz symmetry. It turns out that when one builds a natural phase space on this space–time, its intrinsic length parameter ℓ becomes observer-independent.


Author(s):  
Ahmed Farag Ali

In this paper, we investigate how Rindler observer measures the universe in the ADM formalism. We compute his measurements in each slice of the space-time in terms of gravitational red-shift which is a property of general covariance. In this way, we found special relativity preferred frames to match with the general relativity Rindler frame in ADM formalism. This may resolve the widely known incompatibility between special relativity and general relativity on how each theory sees the red-shift. We found a geometric interpretation of the speed of light and mass.


Author(s):  
Ehud Ahissar ◽  
Moshe Fried

Physics and neuroscience share overlapping objectives, the major of which is probably the attempt to reduce the observed universe to a set of rules. The approaches are complementary, attempting to find a reduced description of the universe or of the observer, respectively. We propose here that combining the two approaches within an observer-inclusive physical scheme, bears significant advantages. In such a scheme, the same set of rules applies to the universe and its observers, and the two descriptions are entangled. We show here that analyzing special relativity in an observer-inclusive framework can resolve its contradiction with the observed non-locality of physical interactions. The contradiction is resolved by reducing the universe (including the observer) to a dynamic distribution of closed strings (“ceons”) whose vibration waves travel at c. This ceons model is consistent with special and general relativity, non-locality and the holographic principle; it also eliminates Zeno’s motion paradoxes. Yet, the model entails several new empirical predictions. Finally, the ceons model suggests a fundamental physical implementation of active biological perception. Paraphrasing Torricelli, this paper suggests that we live submerged in a c of light.


2019 ◽  
pp. 113-183
Author(s):  
Richard Freeman ◽  
James King ◽  
Gregory Lafyatis

The history of experiments and the development of the concepts of special relativity is presented with an emphasis on Einstein’s postulates of relativity and the relativity of simultaneity. The development of the Lorentz transformations follows Einstein’s work in enunciating the principles of covariance among inertial frames. The mathematics of the geometry of space-time is presented using Miniowski’s space-time diagrams. In developing Einstein’s argument for the reality of special relativity consequences, two examples of apparent paradoxes with their resolution are given: the twin and connected rocket problems. The mathematics of 4-vectors is developed with explicit presentation of the 4-vector gradient, 4-vector velocity, 4-vector momentum, 4-vector force, 4-wavevector, 4-current density, and 4-potential. This section sums up with the manifest covariance of Maxwell’s equations, and the presentation of the electromagnetic field and Einstein stress-energy tensor. Finally, simple examples of electromagnetic field transformation are given: static electric and magnetic fields parallel and transverse to the velocity relating two inertial frames; and the transformation of fields from a charge moving at relativistic velocities.


Sign in / Sign up

Export Citation Format

Share Document