Bankruptcy Prediction by Supervised Machine Learning Techniques

Author(s):  
Chih-Fong Tsai ◽  
Yu-Hsin Lu ◽  
Yu-Feng Hsu

It is very important for financial institutions which are capable of accurately predicting business failure. In literature, numbers of bankruptcy prediction models have been developed based on statistical and machine learning techniques. In particular, many machine learning techniques, such as neural networks, decision trees, etc. have shown better prediction performances than statistical ones. However, advanced machine learning techniques, such as classifier ensembles and stacked generalization have not been fully examined and compared in terms of their bankruptcy prediction performances. The aim of this chapter is to compare two different machine learning techniques, one statistical approach, two types of classifier ensembles, and three stacked generalization classifiers over three related datasets. The experimental results show that classifier ensembles by weighted voting perform the best in term of predication accuracy. On the other hand, for Type II errors on average stacked generalization and single classifiers perform better than classifier ensembles.

2012 ◽  
pp. 668-683
Author(s):  
Chih-Fong Tsai ◽  
Yu-Hsin Lu ◽  
Yu-Feng Hsu

It is very important for financial institutions which are capable of accurately predicting business failure. In literature, numbers of bankruptcy prediction models have been developed based on statistical and machine learning techniques. In particular, many machine learning techniques, such as neural networks, decision trees, etc. have shown better prediction performances than statistical ones. However, advanced machine learning techniques, such as classifier ensembles and stacked generalization have not been fully examined and compared in terms of their bankruptcy prediction performances. The aim of this chapter is to compare two different machine learning techniques, one statistical approach, two types of classifier ensembles, and three stacked generalization classifiers over three related datasets. The experimental results show that classifier ensembles by weighted voting perform the best in term of predication accuracy. On the other hand, for Type II errors on average stacked generalization and single classifiers perform better than classifier ensembles.


2021 ◽  
Vol 297 ◽  
pp. 01073
Author(s):  
Sabyasachi Pramanik ◽  
K. Martin Sagayam ◽  
Om Prakash Jena

Cancer has been described as a diverse illness with several distinct subtypes that may occur simultaneously. As a result, early detection and forecast of cancer types have graced essentially in cancer fact-finding methods since they may help to improve the clinical treatment of cancer survivors. The significance of categorizing cancer suffers into higher or lower-threat categories has prompted numerous fact-finding associates from the bioscience and genomics field to investigate the utilization of machine learning (ML) algorithms in cancer diagnosis and treatment. Because of this, these methods have been used with the goal of simulating the development and treatment of malignant diseases in humans. Furthermore, the capacity of machine learning techniques to identify important characteristics from complicated datasets demonstrates the significance of these technologies. These technologies include Bayesian networks and artificial neural networks, along with a number of other approaches. Decision Trees and Support Vector Machines which have already been extensively used in cancer research for the creation of predictive models, also lead to accurate decision making. The application of machine learning techniques may undoubtedly enhance our knowledge of cancer development; nevertheless, a sufficient degree of validation is required before these approaches can be considered for use in daily clinical practice. An overview of current machine learning approaches utilized in the simulation of cancer development is presented in this paper. All of the supervised machine learning approaches described here, along with a variety of input characteristics and data samples, are used to build the prediction models. In light of the increasing trend towards the use of machine learning methods in biomedical research, we offer the most current papers that have used these approaches to predict risk of cancer or patient outcomes in order to better understand cancer.


2020 ◽  
Vol 16 ◽  
Author(s):  
Nitigya Sambyal ◽  
Poonam Saini ◽  
Rupali Syal

Background and Introduction: Diabetes mellitus is a metabolic disorder that has emerged as a serious public health issue worldwide. According to the World Health Organization (WHO), without interventions, the number of diabetic incidences is expected to be at least 629 million by 2045. Uncontrolled diabetes gradually leads to progressive damage to eyes, heart, kidneys, blood vessels and nerves. Method: The paper presents a critical review of existing statistical and Artificial Intelligence (AI) based machine learning techniques with respect to DM complications namely retinopathy, neuropathy and nephropathy. The statistical and machine learning analytic techniques are used to structure the subsequent content review. Result: It has been inferred that statistical analysis can help only in inferential and descriptive analysis whereas, AI based machine learning models can even provide actionable prediction models for faster and accurate diagnose of complications associated with DM. Conclusion: The integration of AI based analytics techniques like machine learning and deep learning in clinical medicine will result in improved disease management through faster disease detection and cost reduction for disease treatment.


2020 ◽  
Vol 28 (2) ◽  
pp. 253-265 ◽  
Author(s):  
Gabriela Bitencourt-Ferreira ◽  
Amauri Duarte da Silva ◽  
Walter Filgueira de Azevedo

Background: The elucidation of the structure of cyclin-dependent kinase 2 (CDK2) made it possible to develop targeted scoring functions for virtual screening aimed to identify new inhibitors for this enzyme. CDK2 is a protein target for the development of drugs intended to modulate cellcycle progression and control. Such drugs have potential anticancer activities. Objective: Our goal here is to review recent applications of machine learning methods to predict ligand- binding affinity for protein targets. To assess the predictive performance of classical scoring functions and targeted scoring functions, we focused our analysis on CDK2 structures. Methods: We have experimental structural data for hundreds of binary complexes of CDK2 with different ligands, many of them with inhibition constant information. We investigate here computational methods to calculate the binding affinity of CDK2 through classical scoring functions and machine- learning models. Results: Analysis of the predictive performance of classical scoring functions available in docking programs such as Molegro Virtual Docker, AutoDock4, and Autodock Vina indicated that these methods failed to predict binding affinity with significant correlation with experimental data. Targeted scoring functions developed through supervised machine learning techniques showed a significant correlation with experimental data. Conclusion: Here, we described the application of supervised machine learning techniques to generate a scoring function to predict binding affinity. Machine learning models showed superior predictive performance when compared with classical scoring functions. Analysis of the computational models obtained through machine learning could capture essential structural features responsible for binding affinity against CDK2.


Author(s):  
Augusto Cerqua ◽  
Roberta Di Stefano ◽  
Marco Letta ◽  
Sara Miccoli

AbstractEstimates of the real death toll of the COVID-19 pandemic have proven to be problematic in many countries, Italy being no exception. Mortality estimates at the local level are even more uncertain as they require stringent conditions, such as granularity and accuracy of the data at hand, which are rarely met. The “official” approach adopted by public institutions to estimate the “excess mortality” during the pandemic draws on a comparison between observed all-cause mortality data for 2020 and averages of mortality figures in the past years for the same period. In this paper, we apply the recently developed machine learning control method to build a more realistic counterfactual scenario of mortality in the absence of COVID-19. We demonstrate that supervised machine learning techniques outperform the official method by substantially improving the prediction accuracy of the local mortality in “ordinary” years, especially in small- and medium-sized municipalities. We then apply the best-performing algorithms to derive estimates of local excess mortality for the period between February and September 2020. Such estimates allow us to provide insights about the demographic evolution of the first wave of the pandemic throughout the country. To help improve diagnostic and monitoring efforts, our dataset is freely available to the research community.


Author(s):  
Linwei Hu ◽  
Jie Chen ◽  
Joel Vaughan ◽  
Soroush Aramideh ◽  
Hanyu Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document