Identification of Most Significant Parameter of Impact of Climate Change and Urbanization on Operational Efficiency of Hydropower Plant

2022 ◽  
pp. 1320-1350
Author(s):  
Priyanka Majumder ◽  
Apu Kumar Saha

The operational performance of hydropower plants (HPPs) is largely affected as the output from the plant entirely depends on the rainfall and demand from consumers both of which are compromised due to the vulnerability in climatic patterns and rapid change in urbanization rate. Although, not all the parameters are equally affected and the present study aims to find the degree of impact on the various correlated parameters on which production efficiency of HPPs varies. In this aspect, a neural network concept was used as decision making tool to identify the most significant parameters with respect to change in climate, urbanization along with machine failure because as a combined effect of the first two parameters, the probability of machine failure will also increase. The result from the study provides an opportunity to mitigate the impact that can be caused as a result of climate change impact and change in rate of urbanization. According to the result it was found that Efficiency of Generators is the most significant parameter of impact of climate change and urbanization on operational efficiency of hydropower plant. The result from the scenario analysis suggested that if the A2 scenario becomes true in 2061-70 there will be a maximum decrease in the OE and if land use scenario: PR story line is found to be adopted in the future world of 2020-30 the change in OE will be the greatest (an increase of 6.056%) compared to any other scenario developed for the impact of urbanization followed by land use change scenario of the 2031-40 decade, which will be equal to an increase of 5.247% compared to the baseline.

2019 ◽  
Vol 8 (3) ◽  
pp. 43-68
Author(s):  
Priyanka Majumder ◽  
Apu Kumar Saha

The operational performance of hydropower plants (HPPs) is largely affected as the output from the plant entirely depends on the rainfall and demand from consumers both of which are compromised due to the vulnerability in climatic patterns and rapid change in urbanization rate. Although, not all the parameters are equally affected and the present study aims to find the degree of impact on the various correlated parameters on which production efficiency of HPPs varies. In this aspect, a neural network concept was used as decision making tool to identify the most significant parameters with respect to change in climate, urbanization along with machine failure because as a combined effect of the first two parameters, the probability of machine failure will also increase. The result from the study provides an opportunity to mitigate the impact that can be caused as a result of climate change impact and change in rate of urbanization. According to the result it was found that Efficiency of Generators is the most significant parameter of impact of climate change and urbanization on operational efficiency of hydropower plant. The result from the scenario analysis suggested that if the A2 scenario becomes true in 2061-70 there will be a maximum decrease in the OE and if land use scenario: PR story line is found to be adopted in the future world of 2020-30 the change in OE will be the greatest (an increase of 6.056%) compared to any other scenario developed for the impact of urbanization followed by land use change scenario of the 2031-40 decade, which will be equal to an increase of 5.247% compared to the baseline.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Chenchen Shi ◽  
Jinyan Zhan ◽  
Yongwei Yuan ◽  
Feng Wu ◽  
Zhihui Li

Ecosystem services are the benefit human populations derive directly and indirectly from the natural environment. They suffer from both the human intervention, like land use zoning change, and natural intervention, like the climate change. Under the background of climate change, regulation services of ecosystem could be strengthened under proper land use zoning policy to mitigate the climate change. In this paper, a case study was conducted in the middle reaches of the Heihe River Basin to assess the ecosystem services conservation zoning under the change of land use associated with climate variations. The research results show the spatial impact of land use zoning on ecosystem services in the study area which are significant reference for the spatial optimization of land use zoning in preserving the key ecosystem services to mitigate the climate change. The research contributes to the growing literature in finely characterizing the ecosystem services zones altered by land use change to alleviate the impact of climate change, as there is no such systematic ecosystem zoning method before.


2019 ◽  
Vol 10 (04) ◽  
pp. 1950015
Author(s):  
BORIS O. K. LOKONON ◽  
AKLESSO Y. G. EGBENDEWE ◽  
NAGA COULIBALY ◽  
CALVIN ATEWAMBA

This paper investigates the impact of climate change on agriculture in the Economic Community of West African States (ECOWAS). To that end, a bio-economic model is built and calibrated on 2004 base year dataset and the potential impact is evaluated on land use and crop production under two representative concentration pathways coupled with three socio-economic scenarios. The findings suggest that land use change may depend on crop types and prevailing future conditions. As of crop production, the results show that paddy rice, oilseeds, sugarcane, cocoa, coffee, and sesame production could experience a decline under both moderate and harsh climate conditions in most cases. Also, doubling crop yields by 2050 could overall mitigate the negative impact of moderate climate change. The magnitude and the direction of the impacts may vary in space and time.


2012 ◽  
Vol 9 (4) ◽  
pp. 4263-4304 ◽  
Author(s):  
P. V. Caldwell ◽  
G. Sun ◽  
S. G. McNulty ◽  
E. C. Cohen ◽  
J. A. Moore Myers

Abstract. Rivers are essential to aquatic ecosystem and societal sustainability, but are increasingly impacted by water withdrawals, land use change, and climate change. The relative and cumulative effects of these stressors on continental river flows are relatively unknown. In this study, we used an integrated water balance and flow routing model to evaluate the impacts of 2010 impervious cover and water withdrawal on river flow across the Conterminous US at the 8-digit Hydrologic Unit Code (HUC) watershed scale. We then estimated the impacts of projected change in withdrawals, impervious cover, and climate under the B1 "low" and A2 "high" emission scenarios on river flows by 2060. Our results suggest that compared to no impervious cover, 2010 levels of impervious cover increased river flows by 9.9% on average with larger impacts in and downstream of major metropolitan areas. In contrast, compared to no water withdrawals, 2010 withdrawals decreased river flows by 1.4% on average with larger impacts in heavily irrigated arid regions of Western US. By 2060, impacts of climate change were predicted to overwhelm the potential gain in river flow due to future changes in impervious cover and add to the potential reduction in river flows from withdrawals, decreasing mean annual river flows from 2010 levels by 16% on average. However, increases in impervious cover by 2060 may offset the impact of climate change during the growing season in some watersheds. Large water withdrawals will aggravate the predicted impact of climate change on river flows, particularly in the Western US. Given that the impacts of land use, withdrawals and climate may be either additive or offsetting in different magnitudes, integrated and spatially explicit modelling and management approaches are necessary to effectively manage water resources for aquatic life and human use in the face of global change.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1838 ◽  
Author(s):  
Mattia Bonato ◽  
Alessandro Ranzani ◽  
Epari Ritesh Patro ◽  
Ludovic Gaudard ◽  
Carlo De Michele

Climate change has repercussions on the management of water resources. Particularly, changes in precipitation and temperature impact hydropower generation and revenue by affecting seasonal electricity prices and streamflow. This issue exemplifies the impact of climate change on the water-energy-nexus, which has raised serious concern. This paper investigates the impact of climate change on hydropower with a multidisciplinary approach. A holistic perspective should be favored as the issue is complex, consequently, we chose to investigate a specific case study in Italy. It allows grasping the details, which matters in mountainous area. We integrated a hydrological model, hydropower management model, nine climate scenarios, and five electricity scenarios for a specific storage hydropower plant. Independently from the scenarios, the results show a glacier volume shrinkage upward of 40% by 2031 and minimum of 50% by 2046. The reservoir mitigates losses of revenue that reach 8% in the worst case, however, are lower compared with run-of-the-river configuration. Changes in price seasonality amplitude also determine modifications in revenues, while temporal shifts appear to be ineffective. For run-of-the-river, any variation in hydrological cycle immediately translates into revenue. Comparing the results of all future scenarios with the base scenario, it can be concluded that an increase in temperature will slightly improve the performances of hydropower.


Sign in / Sign up

Export Citation Format

Share Document