Machine Learning Classification of Tree Cover Type and Application to Forest Management

2020 ◽  
pp. 1141-1164
Author(s):  
Duncan MacMichael ◽  
Dong Si

This article is driven by three goals. The first is to use machine learning to predict tree cover types, helping to address current challenges faced by U.S. forest management agencies. The second is to bring previous research in the area up-to-date, owing to a lack of development over time. The third is to improve on previous results with new data analysis, higher accuracy, and higher reliability. A Deep Neural Network (DNN) was constructed and compared with three baseline traditional machine learning models: Naïve Bayes, Decision Tree, and K-Nearest Neighbor (KNN). The neural network model achieved 91.55% accuracy while the best performing traditional classifier, K-Nearest Neighbor, managed 74.61%. In addition, the neural network model performed 20.97% better than the past neural networks, which illustrates both advances in machine learning algorithms, as well as improved accuracy high enough to apply practically to forest management issues. Using the techniques outlined in this article, agencies can cost-efficiently and quickly predict tree cover type and expedite natural resource inventorying.

Author(s):  
Duncan MacMichael ◽  
Dong Si

This article is driven by three goals. The first is to use machine learning to predict tree cover types, helping to address current challenges faced by U.S. forest management agencies. The second is to bring previous research in the area up-to-date, owing to a lack of development over time. The third is to improve on previous results with new data analysis, higher accuracy, and higher reliability. A Deep Neural Network (DNN) was constructed and compared with three baseline traditional machine learning models: Naïve Bayes, Decision Tree, and K-Nearest Neighbor (KNN). The neural network model achieved 91.55% accuracy while the best performing traditional classifier, K-Nearest Neighbor, managed 74.61%. In addition, the neural network model performed 20.97% better than the past neural networks, which illustrates both advances in machine learning algorithms, as well as improved accuracy high enough to apply practically to forest management issues. Using the techniques outlined in this article, agencies can cost-efficiently and quickly predict tree cover type and expedite natural resource inventorying.


2021 ◽  
Vol 13 (5) ◽  
pp. 969
Author(s):  
Ka Lok Chan ◽  
Ehsan Khorsandi ◽  
Song Liu ◽  
Frank Baier ◽  
Pieter Valks

In this paper, we present the estimation of surface NO2 concentrations over Germany using a machine learning approach. TROPOMI satellite observations of tropospheric NO2 vertical column densities (VCDs) and several meteorological parameters are used to train the neural network model for the prediction of surface NO2 concentrations. The neural network model is validated against ground-based in situ air quality monitoring network measurements and regional chemical transport model (CTM) simulations. Neural network estimation of surface NO2 concentrations show good agreement with in situ monitor data with Pearson correlation coefficient (R) of 0.80. The results also show that the machine learning approach is performing better than regional CTM simulations in predicting surface NO2 concentrations. We also performed a sensitivity analysis for each input parameter of the neural network model. The validated neural network model is then used to estimate surface NO2 concentrations over Germany from 2018 to 2020. Estimated surface NO2 concentrations are used to investigate the spatio-temporal characteristics, such as seasonal and weekly variations of NO2 in Germany. The estimated surface NO2 concentrations provide comprehensive information of NO2 spatial distribution which is very useful for exposure estimation. We estimated the annual average NO2 exposure for 2018, 2019 and 2020 is 15.53, 15.24 and 13.27 µµg/m3, respectively. While the annual average NO2 concentration of 2018, 2019 and 2020 is only 12.79, 12.60 and 11.15 µµg/m3. In addition, we used the surface NO2 data set to investigate the impacts of the coronavirus disease 2019 (COVID-19) pandemic on ambient NO2 levels in Germany. In general, 10–30% lower surface NO2 concentrations are observed in 2020 compared to 2018 and 2019, indicating the significant impacts of a series of restriction measures to reduce the spread of the virus.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Shipra Banik ◽  
A. F. M. Khodadad Khan ◽  
Mohammad Anwer

Forecasting stock market has been a difficult job for applied researchers owing to nature of facts which is very noisy and time varying. However, this hypothesis has been featured by several empirical experiential studies and a number of researchers have efficiently applied machine learning techniques to forecast stock market. This paper studied stock prediction for the use of investors. It is always true that investors typically obtain loss because of uncertain investment purposes and unsighted assets. This paper proposes a rough set model, a neural network model, and a hybrid neural network and rough set model to find optimal buy and sell of a share on Dhaka stock exchange. Investigational findings demonstrate that our proposed hybrid model has higher precision than the single rough set model and the neural network model. We believe this paper findings will help stock investors to decide about optimal buy and/or sell time on Dhaka stock exchange.


Author(s):  
Aravind Akella ◽  
Vibhor Kaushik

AbstractThe development of Coronary Artery Disease (CAD), one of the most prevalent diseases in the world, is heavily influenced by several modifiable risk factors. Predictive models built using machine learning (ML) algorithms may assist healthcare practitioners in timely detection of CAD, and ultimately, may improve outcomes. In this study, we have applied six different ML algorithms to predict the presence of CAD amongst patients listed in an openly available dataset provided by the University of California Irvine (UCI) Machine Learning Repository, named “the Cleveland dataset.” All six ML algorithms achieved accuracies greater than 80%, with the “Neural Network” algorithm achieving accuracy greater than 93%. The recall achieved with the “Neural Network” model is also highest of the six models (0.93). Additionally, five of the six algorithms resulted in very similar AUC-ROC curves. The AUC-ROC curve corresponding to the “Neural Network” algorithm is slightly steeper implying higher “true positive percentage” achieved with this model. We also extracted the variables of importance in the “Neural Network” model to help in the risk assessment. We have released the full computer code generated in this study in the public domain as a preliminary effort toward developing an open solution for predicting the presence of coronary artery disease in a given population and present a workflow model for implementing a possible solution.


2020 ◽  
Vol 8 (10) ◽  
pp. 766
Author(s):  
Dohan Oh ◽  
Julia Race ◽  
Selda Oterkus ◽  
Bonguk Koo

Mechanical damage is recognized as a problem that reduces the performance of oil and gas pipelines and has been the subject of continuous research. The artificial neural network in the spotlight recently is expected to be another solution to solve the problems relating to the pipelines. The deep neural network, which is on the basis of artificial neural network algorithm and is a method amongst various machine learning methods, is applied in this study. The applicability of machine learning techniques such as deep neural network for the prediction of burst pressure has been investigated for dented API 5L X-grade pipelines. To this end, supervised learning is employed, and the deep neural network model has four layers with three hidden layers, and the neural network uses the fully connected layer. The burst pressure computed by deep neural network model has been compared with the results of finite element analysis based parametric study, and the burst pressure calculated by the experimental results. According to the comparison results, it showed good agreement. Therefore, it is concluded that deep neural networks can be another solution for predicting the burst pressure of API 5L X-grade dented pipelines.


Author(s):  
Mostafa H. Tawfeek ◽  
Karim El-Basyouny

Safety Performance Functions (SPFs) are regression models used to predict the expected number of collisions as a function of various traffic and geometric characteristics. One of the integral components in developing SPFs is the availability of accurate exposure factors, that is, annual average daily traffic (AADT). However, AADTs are not often available for minor roads at rural intersections. This study aims to develop a robust AADT estimation model using a deep neural network. A total of 1,350 rural four-legged, stop-controlled intersections from the Province of Alberta, Canada, were used to train the neural network. The results of the deep neural network model were compared with the traditional estimation method, which uses linear regression. The results indicated that the deep neural network model improved the estimation of minor roads’ AADT by 35% when compared with the traditional method. Furthermore, SPFs developed using linear regression resulted in models with statistically insignificant AADTs on minor roads. Conversely, the SPF developed using the neural network provided a better fit to the data with both AADTs on minor and major roads being statistically significant variables. The findings indicated that the proposed model could enhance the predictive power of the SPF and therefore improve the decision-making process since SPFs are used in all parts of the safety management process.


Sign in / Sign up

Export Citation Format

Share Document