Fundamental Principles of IoT

Author(s):  
Mahesh Kumar Jha ◽  
Monika Singh ◽  
Anindita Sahoo

Internet of things (IoT) is the extension network of the Internet. Internet-enabled objects have the ability to sense and communicate with other objects or humans. Enormous components are used to build the IoT network. IoT begins with the connectivity since IoT is extensively diverse. It is certainly obscure to find a single size fits to all the types of communication. Various solutions have their strengths and weaknesses in different network criteria to best suit different IoT applications. IoT is available in various forms. One of the different types of IoT available for deployment is narrowband IoT (NB-IoT). NB-IoT is famous due to its attractive features of low power wide area (LPWA). Though the challenges such as security, latency, interoperability, policymaking, and resiliency exist for all types of IoT network, it can be improved with careful architectural design. In this chapter, the authors highlight the fundamentals involved in building the network of internet-enabled devices. It describes types of IoT networks, different computing mechanisms in IoT, basic architecture underlying the development, applications in the expansive domain, and finally, the insight of the challenges in IoT.

Technologies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 22
Author(s):  
Eljona Zanaj ◽  
Giuseppe Caso ◽  
Luca De Nardis ◽  
Alireza Mohammadpour ◽  
Özgü Alay ◽  
...  

In the last years, the Internet of Things (IoT) has emerged as a key application context in the design and evolution of technologies in the transition toward a 5G ecosystem. More and more IoT technologies have entered the market and represent important enablers in the deployment of networks of interconnected devices. As network and spatial device densities grow, energy efficiency and consumption are becoming an important aspect in analyzing the performance and suitability of different technologies. In this framework, this survey presents an extensive review of IoT technologies, including both Low-Power Short-Area Networks (LPSANs) and Low-Power Wide-Area Networks (LPWANs), from the perspective of energy efficiency and power consumption. Existing consumption models and energy efficiency mechanisms are categorized, analyzed and discussed, in order to highlight the main trends proposed in literature and standards toward achieving energy-efficient IoT networks. Current limitations and open challenges are also discussed, aiming at highlighting new possible research directions.


2019 ◽  
Vol 11 (3) ◽  
pp. 57 ◽  
Author(s):  
Lorenzo Vangelista ◽  
Marco Centenaro

The low-power wide-area network (LPWAN) paradigm is gradually gaining market acceptance. In particular, three prominent LPWAN technologies are emerging at the moment: LoRaWAN™ and SigFox™, which operate on unlicensed frequency bands, and NB-IoT, operating on licensed frequency bands. This paper deals with LoRaWAN™, and has the aim of describing a particularly interesting feature provided by the latest LoRaWAN™ specification—often neglected in the literature—i.e., the roaming capability between different operators of LoRaWAN™ networks, across the same country or even different countries. Recalling that LoRaWAN™ devices do not have a subscriber identification module (SIM) like cellular network terminals, at a first glance the implementation of roaming in LoRaWAN™ networks could seem intricate. The contribution of this paper consists in explaining the principles behind the implementation of a global LoRaWAN network, with particular focus on how to cope with the lack of the SIM in the architecture and how to realize roaming.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6837
Author(s):  
Adeiza J. Onumanyi ◽  
Adnan M. Abu-Mahfouz ◽  
Gerhard P. Hancke

The Internet of Things (IoT) is an emerging paradigm that enables many beneficial and prospective application areas, such as smart metering, smart homes, smart industries, and smart city architectures, to name but a few. These application areas typically comprise end nodes and gateways that are often interconnected by low power wide area network (LPWAN) technologies, which provide low power consumption rates to elongate the battery lifetimes of end nodes, low IoT device development/purchasing costs, long transmission range, and increased scalability, albeit at low data rates. However, most LPWAN technologies are often confronted with a number of physical (PHY) layer challenges, including increased interference, spectral inefficiency, and/or low data rates for which cognitive radio (CR), being a predominantly PHY layer solution, suffices as a potential solution. Consequently, in this article, we survey the potentials of integrating CR in LPWAN for IoT-based applications. First, we present and discuss a detailed list of different state-of-the-art LPWAN technologies; we summarize the most recent LPWAN standardization bodies, alliances, and consortia while emphasizing their disposition towards the integration of CR in LPWAN. We then highlight the concept of CR in LPWAN via a PHY-layer front-end model and discuss the benefits of CR-LPWAN for IoT applications. A number of research challenges and future directions are also presented. This article aims to provide a unique and holistic overview of CR in LPWAN with the intention of emphasizing its potential benefits.


2020 ◽  
Vol 27 (1) ◽  
pp. 206-213 ◽  
Author(s):  
Carles Gomez ◽  
Ana Minaburo ◽  
Laurent Toutain ◽  
Dominique Barthel ◽  
Juan Carlos Zuniga

Sign in / Sign up

Export Citation Format

Share Document