Application of Machine Learning in Chronic Kidney Disease Risk Prediction Using Electronic Health Records (EHR)

Author(s):  
Laxmi Kumari Pathak ◽  
Pooja Jha

Chronic kidney disease (CKD) is a disorder in which the kidneys are weakened and become unable to filter blood. It lowers the human ability to remain healthy. The field of biosciences has progressed and produced vast volumes of knowledge from electronic health records. Heart disorders, anemia, bone diseases, elevated potassium, and calcium are the very prevalent complications that arise from kidney failure. Early identification of CKD can improve the quality of life greatly. To achieve this, various machine learning techniques have been introduced so far that use the data in electronic health record (EHR) to predict CKD. This chapter studies various machine learning algorithms like support vector machine, random forest, probabilistic neural network, Apriori, ZeroR, OneR, naive Bayes, J48, IBk (k-nearest neighbor), ensemble method, etc. and compares their accuracy. The study aims in finding the best-suited technique from different methods of machine learning for the early detection of CKD by which medical professionals can interpret model predictions easily.

The field of biosciences have advanced to a larger extent and have generated large amounts of information from Electronic Health Records. This have given rise to the acute need of knowledge generation from this enormous amount of data. Data mining methods and machine learning play a major role in this aspect of biosciences. Chronic Kidney Disease(CKD) is a condition in which the kidneys are damaged and cannot filter blood as they always do. A family history of kidney diseases or failure, high blood pressure, type 2 diabetes may lead to CKD. This is a lasting damage to the kidney and chances of getting worser by time is high. The very common complications that results due to a kidney failure are heart diseases, anemia, bone diseases, high potasium and calcium. The worst case situation leads to complete kidney failure and necessitates kidney transplant to live. An early detection of CKD can improve the quality of life to a greater extent. This calls for good prediction algorithm to predict CKD at an earlier stage . Literature shows a wide range of machine learning algorithms employed for the prediction of CKD. This paper uses data preprocessing,data transformation and various classifiers to predict CKD and also proposes best Prediction framework for CKD. The results of the framework show promising results of better prediction at an early stage of CKD


Author(s):  
Duc Thanh Anh Luong ◽  
Dinh Tran ◽  
Wilson D Pace ◽  
Miriam Dickinson ◽  
Joseph Vassalotti ◽  
...  

Author(s):  
Duc Thanh Anh Luong ◽  
Dinh Tran ◽  
Wilson D. Pace ◽  
Miriam Dickinson ◽  
Joseph Vassalotti ◽  
...  

2020 ◽  
Author(s):  
Abin Abraham ◽  
Brian L Le ◽  
Idit Kosti ◽  
Peter Straub ◽  
Digna R Velez Edwards ◽  
...  

Abstract: Identifying pregnancies at risk for preterm birth, one of the leading causes of worldwide infant mortality, has the potential to improve prenatal care. However, we lack broadly applicable methods to accurately predict preterm birth risk. The dense longitudinal information present in electronic health records (EHRs) is enabling scalable and cost-efficient risk modeling of many diseases, but EHR resources have been largely untapped in the study of pregnancy. Here, we apply machine learning to diverse data from EHRs to predict singleton preterm birth. Leveraging a large cohort of 35,282 deliveries, we find that a prediction model based on billing codes alone can predict preterm birth at 28 weeks of gestation (ROC-AUC=0.75, PR-AUC=0.40) and outperforms a comparable model trained using known risk factors (ROC-AUC=0.59, PR-AUC=0.21). Our machine learning approach is also able to accurately predict preterm birth sub-types (spontaneous vs. indicated), mode of delivery, and recurrent preterm birth. We demonstrate the portability of our approach by showing that the prediction models maintain their accuracy on a large, independent cohort (5,978 deliveries) with only a modest decrease in performance. Interpreting the features identified by the model as most informative for risk stratification demonstrates that they capture non-linear combinations of known risk factors and patterns of care. The strong performance of our approach across multiple clinical contexts and an independent cohort highlights the potential of machine learning algorithms to improve medical care during pregnancy.


Sign in / Sign up

Export Citation Format

Share Document