A Probabilistic Optimal Power Flow in Wind-Thermal Coordination Considering Intermittency of the Wind

2021 ◽  
Vol 10 (1) ◽  
pp. 82-110
Author(s):  
Sriparna Banerjee ◽  
Dhiman Banerjee ◽  
Provas Kumar Roy ◽  
Pradip Kumar Saha ◽  
Goutam Kumar Panda

This article specifically aims to prove the superiority of the proposed moth swarm algorithm (MSA) in view of wind-thermal coordination. In the present article, a probabilistic optimal power flow (POPF) problem is formulated to reflect the probabilistic nature of wind. Modelling of doubly fed induction generator (DFIG) is included in the proposed POPF to represent the wind energy conversion system (WECS). To reduce DFIG imposed deviation of bus voltage ancillary reactive power support is considered. Moreover, three different optimization techniques, namely, MSA, biogeography-based optimization (BBO), and particle swarm optimization (PSO) are independently applied for the minimization of active power generation cost for wind-thermal coordination, considering different instances in case of IEEE 30-bus and IEEE 118-bus system. From the simulation results, it is confirmed and validated that the proposed MSA performs considerably better than BBO and PSO.

Author(s):  
C. M. WANKHADE ◽  
A. P. VAIDYA

This paper presents an efficient genetic algorithm for solving non-convex optimal power flow (OPF) problems with bus voltage constraints for practical application. In this method, the individual is the binary-coded representation that contains a mixture of continuous and discrete control variables, and crossover and mutation schemes are proposed to deal with continuous/discrete control variables, respectively. The objective of OPF is defined that not only to minimize total generation cost but also to improve the bus voltage profile.. The proposed method is demonstrated for a IEEE 30-bus four generator ystem, and it is compared with conventional method.The experimental results show that the GA OPF method is superior to the conventional.


2021 ◽  
pp. 1-11
Author(s):  
Ramesh Devarapalli ◽  
B. Venkateswara Rao ◽  
Bishwajit Dey ◽  
K. Vinod Kumar ◽  
H. Malik ◽  
...  

Nowadays, improvement in power system performance is essential to obtaine economic and technical benifits. To achieve this, optimize the large number of parameters in the system based on optimal power flow(OPF). For solving OPF problem efficiently, it needs robust and fast optimization techniques. This paper proposes the application of a newly developed hybrid Whale and Sine Cosine optimization algorithm to solve the OPF. It has been implemented for optimization of the control variables. The reduction of true power generation cost, emission, true power losses, and voltage deviation are considered as different objectives. The hybrid Whale and Sine Cosine optimization is validated by solving OPF problem with various intentions using IEEE30 bus system. To varidate the proposed technique, the results obtained from this are compared with other methods in the literature. The robustness achieved with the proposed algorithm has been analyzed for the considered OPF problem using statistical analysis and whisker plots.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256050
Author(s):  
Mohammad Zohrul Islam ◽  
Mohammad Lutfi Othman ◽  
Noor Izzri Abdul Wahab ◽  
Veerapandiyan Veerasamy ◽  
Saifur Rahman Opu ◽  
...  

This study presents a nature-inspired, and metaheuristic-based Marine predator algorithm (MPA) for solving the optimal power flow (OPF) problem. The significant insight of MPA is the widespread foraging strategy called the Levy walk and Brownian movements in ocean predators, including the optimal encounter rate policy in biological interaction among predators and prey which make the method to solve the real-world engineering problems of OPF. The OPF problem has been extensively used in power system operation, planning, and management over a long time. In this work, the MPA is analyzed to solve the single-objective OPF problem considering the fuel cost, real and reactive power loss, voltage deviation, and voltage stability enhancement index as objective functions. The proposed method is tested on IEEE 30-bus test system and the obtained results by the proposed method are compared with recent literature studies. The acquired results demonstrate that the proposed method is quite competitive among the nature-inspired optimization techniques reported in the literature.


2018 ◽  
Vol 24 (3) ◽  
pp. 84
Author(s):  
Hassan Abdullah Kubba ◽  
Mounir Thamer Esmieel

Nowadays, the power plant is changing the power industry from a centralized and vertically integrated form into regional, competitive and functionally separate units. This is done with the future aims of increasing efficiency by better management and better employment of existing equipment and lower price of electricity to all types of customers while retaining a reliable system. This research is aimed to solve the optimal power flow (OPF) problem. The OPF is used to minimize the total generations fuel cost function. Optimal power flow may be single objective or multi objective function. In this thesis, an attempt is made to minimize the objective function with keeping the voltages magnitudes of all load buses, real output power of each generator bus and reactive power of each generator bus within their limits. The proposed method in this thesis is the Flexible Continuous Genetic Algorithm or in other words the Flexible Real-Coded Genetic Algorithm (RCGA) using the efficient GA's operators such as Rank Assignment (Weighted) Roulette Wheel Selection, Blending Method Recombination operator and Mutation Operator as well as Multi-Objective Minimization technique (MOM). This method has been tested and checked on the IEEE 30 buses test system and implemented on the 35-bus Super Iraqi National Grid (SING) system (400 KV). The results of OPF problem using IEEE 30 buses typical system has been compared with other researches.     


Author(s):  
Anuj Singh ◽  
Dr. Sandeep Sharma ◽  
Karan Sharma ◽  
Flansha Jain ◽  
Shreyanshu Kumar Jena

A Power System is actually a vast system that requires an outstanding plan for maintaining the continual flow of electricity. When a fault occurs at the power system, number of difficulties arises because of transients in system. so to attenuate these transients, power electronics based devices like FACTS are utilized. A unified power flow controller (UPFC) is one among different power electronics controller which can dispense VAR compensation, line impedance control and phase shifting. The thought is to see potential of UPFC to require care of active and reactive power movement within the compensated line (including UPFC) and to shrink the falloff of the bus voltage in case of grounding fault within the cable. power system block consisting of simulink is used for numerical analysis. Simulation outcomes from MATLAB reflects major improvement in the overall system’s behaviour with UPFC in sustain the voltage and power flow even under severe line faults by proper injection of series voltage into the cable at the point of connection. outcomes shows how the UPFC contributes effectively to a faster regaining of the power system to the pre-fault conditions.


2018 ◽  
Vol 7 (4) ◽  
pp. 2766 ◽  
Author(s):  
S. Surender Reddy

This paper solves a multi-objective optimal power flow (MO-OPF) problem in a wind-thermal power system. Here, the power output from the wind energy generator (WEG) is considered as the schedulable, therefore the wind power penetration limits can be determined by the system operator. The stochastic behavior of wind power and wind speed is modeled using the Weibull probability density function. In this paper, three objective functions i.e., total generation cost, transmission losses and voltage stability enhancement index are selected. The total generation cost minimization function includes the cost of power produced by the thermal and WEGs, costs due to over-estimation and the under-estimation of available wind power. Here, the MO-OPF problems are solved using the multi-objective glowworm swarm optimiza-tion (MO-GSO) algorithm. The proposed optimization problem is solved on a modified IEEE 30 bus system with two wind farms located at two different buses in the system.  


Author(s):  
Aboubakr Khelifi ◽  
Bachir Bentouati ◽  
Saliha Chettih

Optimal Power Flow (OPF) problem is one of the most important and widely studied nonlinear optimization problems in power system operation. This study presents the implementation of a new technology based on the hybrid Firefly and krill herd method (FKH), which has been provided and used for OPF problems in power systems. In FKH, an improved formulation of the attractiveness and adjustment of light intensity operator initially employed in FA, named attractiveness and light intensity the update operator (ALIU), is inserted into the KH approach as a local search perform. The FKH is prove with the solving of the OPF problem for various types of single-objective and multi-objective functions such as generation cost, reduced emission, active power losses and voltage deviation which are optimized simultaneously on exam system, viz the IEEE-30 Bus test system, which is used to test and confirm the efficiency of the proposed FKH technique. By comparing with several optimization techniques, the results produced by using the recommended FKH technique are provided in detail. The results obtained in this study appear that the FKH technique can be efficiency used to solve the non-linear and non-convex problems and high performance compared with other optimization methods in the literature. This study can achieve a minimum objective by finding the optimum setting for system control variables.


Sign in / Sign up

Export Citation Format

Share Document