Construction of e-commerce system based on 5G and Internet of Things technology

In order to improve the comprehensive performance of the e-commerce system, this paper combines 5G communication technology and the Internet of Things technology to improve the e-commerce system, and conduct end-point analysis on the e-commerce client data analysis system and smart logistics system. Moreover, this paper uses 5G technology to improve machine learning algorithms to process e-commerce back-end data and improve the efficiency of e-commerce client data processing. In addition, this paper combines the Internet of Things to build an e-commerce smart logistics system model to improve the overall efficiency of the logistics system. Finally, this paper combines the demand analysis to construct the functional module structure of the e-commerce system, and verifies the practical functions of the system through experimental research. From the experimental research results, it can be seen that the e-commerce system based on 5G communication technology and Internet of Things technology constructed in this paper is very reliable.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ketao Deng

The gradual increase in the density of highway vehicles and traffic flow makes the abnormal driving state of vehicles an indispensable tool for assisting traffic dispatch. Intelligent transportation systems can detect and track vehicles in real time, acquire characteristics such as vehicle traffic, vehicle speed, vehicle flow density, and vehicle trajectory, and further perform advanced tasks such as vehicle trajectory. The detection of abnormal vehicle trajectory is an important content of vehicle trajectory understanding. And the development of the Internet of Things (IoT) and 5G technology has led to a continuous increase in the rate of data information circulation. The “Internet of Vehicles” generated based on the practice of 5G communication technology constitutes a vehicle abnormal trajectory detection system, which has very high feasibility and safety and stability. Therefore, this research is aimed at the needs of preventing major accidents and forensic analysis during highway vehicles. Based on the integration of the Internet of Things 5G communication technology, a trajectorial anomaly detection of highway vehicle trajectory based on the integration of the Internet of Things 5G is proposed. By accurately sensing unsafe events at the perception layer, network layer, and application layer, the vehicle driving trajectory state is divided into several simple semantic representations. The semantic representation is analyzed, and then the moving target detection and moving target tracking algorithms needed to extract the vehicle trajectory are introduced. Through video detection and tracking of moving vehicle targets, the driving trajectory of the vehicle is obtained, and the movement characteristics of the vehicle in each frame of image are extracted. According to the relationship between the trajectory of the vehicle and the lane line, the vehicle trajectory analysis is realized, and then it is judged whether the vehicle has abnormal trajectory. Compared with the traditional method of manually detecting the driving condition of the vehicle, the abnormal trajectory detection of the vehicle based on the integration of the Internet of Things and 5G can quickly detect the abnormal trajectory of the vehicle in the traffic monitoring video.


Author(s):  
Zhiping Wang ◽  
Xinxin Zheng ◽  
Zhichen Yang

The Internet of Things (IoT) technology is an information technology developed in recent years with the development of electronic sensors, intelligence, network transmission and control technologies. This is the third revolution in the development of information technology. This article aims to study the algorithm of the Internet of Things technology, through the investigation of the hazards of athletes’ sports training, scientifically and rationally use the Internet of Things technology to collect data on safety accidents in athletes’ sports training, thereby reducing the risk of athletes’ sports training and making athletes better. In this article, the methods of literature research, analysis and condensing, questionnaire survey, theory and experiment combination, etc., investigate the safety accident data collection of the Internet of Things technology in athletes’ sports training, and provide certain theories and methods for future in-depth research practice basis. The experimental results in this article show that 82% of athletes who are surveyed under the Internet of Things technology will have partial injuries during training, reducing the risk of safety accidents in athletes’ sports training, and better enabling Chinese athletes to achieve a consistent level of competition and performance through a virtuous cycle of development.


Author(s):  
Kai Zhang

With the development of emerging technology innovations such as the internet of things, classroom management has also shown an informatization trend. Among them, smart classrooms are an important part of the current university information environment construction. The purpose of this article is to build a smart classroom into an intelligent teaching environment with many functions such as intelligent perception and identification, real-time monitoring based on the internet of things technology and cloud computing technology. A questionnaire survey was conducted among freshman students in some majors, and interviews were conducted with the instructors. It was found that 92.19% of the students were satisfied with the classroom learning in the smart classroom environment, and most teachers thought that the teaching effect had been improved. Experiments have proven that the operation of smart classrooms based on the internet of things and cloud computing realizes the intelligence of teaching management services and improves the level of education informationization in schools.


Author(s):  
Haiting Huang

In order to explore the application of IoT technology in robots and the promotion of IoT robot technology to the economy, by comparing traditional technology and IoT intelligent robot technology, this article combines it with economic development to analyze the promotion of IoT robot to economic development. Based on the ultra-wideband ranging method, this paper designs an ultra-wideband radio frequency positioning system and applies it to the robot’s positioning process. Moreover, this article combines the application of robots in the current social and economic development to construct the system structure, and conducts functional analysis with manufacturing robots and monitoring robots as the main body. After constructing an intelligent robot based on the Internet of Things technology, by comparing the traditional technology and the intelligent robot technology of the Internet of Things, this article combines it with economic development to analyze the promotion of IoT robot to economic development. From the analysis results of this article, it can be seen that the advancement of IoT robot technology can effectively promote economic development.


Sign in / Sign up

Export Citation Format

Share Document