Experimental Study of the Effect of Post Processing Techniques on Mechanical Properties of Fused Deposition Modelled Parts

Author(s):  
Addanki Sambasiva Rao ◽  
Medha A. Dharap ◽  
J. V. L. Venkatesh

FDM (Fused Deposition Modelled) parts are chemically treated with two types of chemicals viz Dimethyl ketone (Acetone) and Methyl ethyl ketone to reduce the surface roughness. This chemical treatment method technique not only reduces surface roughness but also makes effect on strength of chemically treated parts of ABS (Acrylonitrile Butadiene Styrene) material. In this study Taguchi method of DOE (Design of Experiments) is conducted on test specimen of “tensile”, “bending” and “izod impact” components which are manufactured through Fused Deposition Modeling process using ABS-P400 material. DOE is conducted to optimize the effect of chemical treatment process parameters on strength of above specimen parts. The process parameters considered for the DOE are “different levels of concentration of chemical, temperature, time, layer thickness etc. ANOVA (Analysis of variance) is used to know the significance of contribution of each of these parameters. Results reveal that the prototypes when treated at optimum condition the tensile strength, flexural strength and izod impact strength improved significantly.

2021 ◽  
Vol 896 ◽  
pp. 29-37
Author(s):  
Ján Milde ◽  
František Jurina ◽  
Jozef Peterka ◽  
Patrik Dobrovszký ◽  
Jakub Hrbál ◽  
...  

The article focused on the influence of part orientation on the surface roughness of cuboid parts during the process of fabricating by FDM technology. The components, in this case, is simple cuboid part with the dimensions 15 mm x 15mm x 30 mm. A geometrical model is defined that considers the shape of the material filaments after deposition, to define a theoretical roughness profile, for a certain print orientation angle. Five different print orientations in the X-axis of the cuboid part were set: 0°, 30°, 45°, 60°, and 90°. According to previous research in the field of FDM technology by the author, the internal structure (infill) was set at the value of 70%. The method of 3D printing was the Fused Deposition Modeling (FDM) and the material used in this research was thermoplastic ABS (Acrylonitrile butadiene styrene). For each setting, there were five specimens (twenty five prints in total). Prints were fabricated on a Zortrax M200 3D printer. After the 3D printing, the surface “A” was investigated by portable surface roughness tester Mitutoyo SJ-210. Surface roughness in the article is shown in the form of graphs (Fig.7). Results show increase in part roughness with increasing degree of part orientation. When the direction of applied layers on the measured surface was horizontal, significant improvement in surface roughness was observed. Findings in this paper can be taken into consideration when designing parts, as they can contribute in achieving lower surface roughness values.


2021 ◽  
pp. 251659842110311
Author(s):  
Shrikrishna Pawar ◽  
Dhananjay Dolas1

Fused deposition modeling (FDM) is one of the most commonly used additive manufacturing (AM) technologies, which has found application in industries to meet the challenges of design modifications without significant cost increase and time delays. Process parameters largely affect the quality characteristics of AM parts, such as mechanical strength and surface finish. This article aims to optimize the parameters for enhancing flexural strength and surface finish of FDM parts. A total of 18 test specimens of polycarbonate (PC)-ABS (acrylonitrile–butadiene–styrene) material are printed to analyze the effect of process parameters, viz. layer thickness, build orientation, and infill density on flexural strength and surface finish. Empirical models relating process parameters with responses have been developed by using response surface regression and further analyzed by analysis of variance. Main effect plots and interaction plots are drawn to study the individual and combined effect of process parameters on output variables. Response surface methodology was employed to predict the results of flexural strength 48.2910 MPa and surface roughness 3.5826 µm with an optimal setting of parameters of 0.14-mm layer thickness and 100% infill density along with horizontal build orientation. Experimental results confirm infill density and build orientation as highly significant parameters for impacting flexural strength and surface roughness, respectively.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1539 ◽  
Author(s):  
Huadong Yang ◽  
Fengchao Ji ◽  
Zhen Li ◽  
Shuai Tao

In the fields of agriculture, medical treatment, food, and packaging, polymers are required to have the characteristics of self-cleaning, anti-icing, and anti-corrosion. The traditional preparation method of hydrophobic coatings is costly and the process is complex, which has special requirements on the surface of the part. In this study, fused deposition modeling (FDM) 3D printing technology with design and processing flexibility was applied to the preparation of hydrophobic coatings on polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) parts, and the relationship between the printing process parameters and the surface roughness and wettability of the printed test parts was discussed. The experimental results show that the layer thickness and filling method have a significant effect on the surface roughness of the 3D-printed parts, while the printing speed has no effect on the surface roughness. The orthogonal experiment analysis method was used to perform the wettability experiment analysis, and the optimal preparation process parameters were found to be a layer thickness of 0.25 mm, the Grid filling method, and a printing speed of 150 mm/s.


2020 ◽  
Vol 19 (01) ◽  
pp. 15-29
Author(s):  
Gurpreet Singh Phull ◽  
Sanjeev Kumar ◽  
Ravinderjit Singh Walia ◽  
Harpinder Singh

The market trends from last few decades have increased the pressure on development of the new products in minimum time. This can be supplemented with modification in the manufacturing processes for product development. Since last two decades, additive manufacturing (AM) also known as rapid prototyping has been used to produce components. The present work aims at optimization of thickness of deposition and surface finish of copper on Acrylonitrile Butadiene Styrene (ABS) components produced by Fused Deposition Modeling (FDM), which can be used for indirect tooling. The different process parameters such as Voltage, Concentration of Copper sulfate Solution (CSS) and deposition time are optimized. The experiment reveals that the best process parameters for maximum deposition rate gives a deposition rate of 0.19 mm/h. The surface roughness is found to be minimum at the lower values of the process parameters as 1.87 [Formula: see text]m. It has been observed that voltage (43.2%) and concentration of CSS (48.8%) significantly affect the deposition rate and for surface finish the concentration of CSS (69.59%) is the major contributor. The microstructure study of the deposited copper reveals a variation in the grain size from coarse to fine as the thickness of the deposited layer increases.


2015 ◽  
Vol 713-715 ◽  
pp. 2737-2740 ◽  
Author(s):  
Tran Linh Khuong ◽  
Zhao Gang ◽  
Muhammad Farid ◽  
Rao Yu

3D printing technology which is also named as fast prototypinghas shown excellent resultsto manufacture more complex and sophiscated products;hence is increasingly being developed and widely applied. Fused Deposition Modeling (FDM) is one of the most popular 3D printing techniques available today because it's simple and easy to make, these cheap printers nowadays are using this technology. Acrylonitrile Butadiene Styrene (ABS) is the material which is most commonly used among three kinds of common materials of FDM technology ABS, PLA, PVA. To design a patternfor using FDM technology using the printer UP2in particular, the exact calculations and the mechanical properties of the material ABS are required.The article focuses on testing the Izod impact strength.


2020 ◽  
Vol 14 (4) ◽  
pp. 7416-7423
Author(s):  
Mohammed Yunus ◽  
Mohammad S. Alsoufi

Additive manufacturing (AM) technology has the ability to produce parts or products using data from 3D CAD models based on adding material. Fused deposition modeling (FDM) is among the most popular AM technologies wherein the plastic materials like acrylonitrile-butadiene-styrene filaments get added in the form of semi-molten plastic layers from bottom to top to produce the final product. Besides, the merits of using the FDM process, it faces challenges related to strength, dimensional accuracy, surface finish, and so on. The mechanical, tribological, and surface finish of functional parts is an essential consideration in FDM. In this work, the role of process parameters such as the part positions and raster inclinations involved in the manufacturing of parts by FDM has been evaluated experimentally to obtain the desired properties for reducing production time, the quantity of supporting material, and overall cost including maintenance costs. The study revealed that part position is a more significant parameter than the raster inclinations on the surface roughness and mechanical properties of the FDM parts. It also concludes with the proper values of part positions and raster inclinations for achieving optimal mechanical properties, roughness, and manufacturing costs to withstand operating loading conditions.


2013 ◽  
Vol 465-466 ◽  
pp. 55-59 ◽  
Author(s):  
M.N. Hafsa ◽  
Mustaffa Ibrahim ◽  
Md. Saidin Wahab ◽  
M.S. Zahid

Selection of the most suitable Rapid Prototyping (RP) and manufacturing process for a specific part creation is a difficult task due to the development of RP processes and materials. Most current RP processes can build with more than one type of material. The paper presents the evaluation on Acrylonitrile Butadiene Styrene (ABS) and Polylactic acid (PLA) part produced from Fused Deposition Modeling (FDM) as a master pattern for Investment Casting (IC) process. The main purpose of this research is to evaluate the dimensional accuracy and surface roughness for hollow and solid part of FDM pattern for IC process with different layer thickness. The value were taken for both before and after the casting process. Results show that model fabricated with hollow internal pattern structure (ABS material) that produced by low layer thickness is better than other models in terms of its dimensional accuracy (-0.19666mm) and surface roughness (1.41μm). Even though the ABS built part performed better as the model, the PLA build part produces better overall casting result. Final part fabricated with solid pattern (PLA material) that produced by high layer thickness is better than other final parts which its dimensional accuracy (-0.12777mm) and surface roughness (3.07μm).


Sign in / Sign up

Export Citation Format

Share Document