Studying the effect of chemical treatment and fused deposition modelling process parameters on surface roughness to make acrylonitrile butadiene styrene patterns for investment casting process

2015 ◽  
Vol 5 (3/4) ◽  
pp. 276 ◽  
Author(s):  
Vivek Tiwary ◽  
P. Arunkumar ◽  
Anand S. Deshpande ◽  
Vaidyanath Khorate
2019 ◽  
Vol 821 ◽  
pp. 137-143 ◽  
Author(s):  
Pavan Kumar Gurrala ◽  
Brijesh Tripathi

In the current technological evolution, additive manufacturing is taking a lead role in manufacturing of components for both prototyping as well as finished products. Metallization of the polymer parts has high potential to add value in-terms of metallic luster, improved strength, long shelf-life and better radiation resistance. Standard acid copper plating process has been adopted for deposition of copper on polymer parts manufactured by fused deposition modelling (FDM) technique. The parameters namely the etching time, voltage and the surface finish of the manufactured FDM parts are studied for their influence on the surface quality. Experiments have been designed using design of experiments strategy. Experiments have been conducted and surface roughness has been measured. Influence of each of the three parameters has been discussed in detail. For the reported process the optimal value of etching time of Acrylonitrile Butadiene Styrene (ABS) has been found in the range of 30 to 60 minutes along with applied voltage in the range of 1.5 to 2.5 Volts for copper electroplating.


2015 ◽  
Vol 1125 ◽  
pp. 499-503
Author(s):  
Soudeh Iranmanesh ◽  
Mohd Hasbullah Idris ◽  
Alireza Esmaeilzadeh

Investment casting has emerged as the foremost casting process for manufacturing of complex parts where better dimensional accuracy is required. Rapid Prototyping (RP) technologies is able to manufacture prototypes from various modelling materials. Stratasys Fused Deposition Modelling (FDM) is a typical RP process that can fabricate prototypes from acrylonitrile butadiene styrene (ABS) used in investment casting process. Elimination of steps in mould making required in the traditional pattern wax preparation makes it quicker and a cost effective process. This paper characterises the behaviour of two proximal humerus ABS pattern constructions, namely solid and hollow fabricated by the FDM 2000 during flash dewaxing process. The dewaxing process parameters such as, temperature and time were regulated and the remaining weight of ABS material in the ceramic mould was examined.


Author(s):  
Addanki Sambasiva Rao ◽  
Medha A. Dharap ◽  
J. V. L. Venkatesh

FDM (Fused Deposition Modelled) parts are chemically treated with two types of chemicals viz Dimethyl ketone (Acetone) and Methyl ethyl ketone to reduce the surface roughness. This chemical treatment method technique not only reduces surface roughness but also makes effect on strength of chemically treated parts of ABS (Acrylonitrile Butadiene Styrene) material. In this study Taguchi method of DOE (Design of Experiments) is conducted on test specimen of “tensile”, “bending” and “izod impact” components which are manufactured through Fused Deposition Modeling process using ABS-P400 material. DOE is conducted to optimize the effect of chemical treatment process parameters on strength of above specimen parts. The process parameters considered for the DOE are “different levels of concentration of chemical, temperature, time, layer thickness etc. ANOVA (Analysis of variance) is used to know the significance of contribution of each of these parameters. Results reveal that the prototypes when treated at optimum condition the tensile strength, flexural strength and izod impact strength improved significantly.


2018 ◽  
Vol 24 (6) ◽  
pp. 921-934 ◽  
Author(s):  
Mohammad Abu Hasan Khondoker ◽  
Asad Asad ◽  
Dan Sameoto

Purpose This paper aims to target to print functionally gradient materials (FGM) devices made of immiscible polymers in multi-material fused deposition modelling (FDM) systems. The design is intended to improve adhesion of dissimilar thermoplastics without the need for chemical compatibilization so that filaments from many different sources can be used effectively. Therefore, there is a need to invent an alternative solution for printing multiple immiscible polymers in an FDM system with the desired adhesion. Design/methodology/approach In this study, the authors have developed a bi-extruder for FDM systems which can print two thermoplastics through a single nozzle with a static intermixer to enhance bonding between input materials. The system can also change the composition of extrudates continuously. Findings The uniqueness of this extruder is in its easy access to the internal channel so that a static intermixer can be inserted, enabling deposition of mechanically interlocked extrudates composed of two immiscible polymers. Without this intermixer, the bi-extruder extrudes with simple side-by-side co-extrusion having no mechanical interlocking. The bi-extruder was characterized by printing objects using pairs of materials including polylactic acid, acrylonitrile butadiene styrene and high impact polystyrene. Microscope images of the cross-sections of the extrudates confirm the ability of this bi-extruder to control the composition as desired. It was also found that the mechanically interlocked extrudates composed of two immiscible polymers substantially reduces adhesion failures within and between filaments. Originality/value In this study, the first-ever FDM extruder with a mechanical blending feature next to the nozzle has been designed and used to successfully print FGM objects with improved mechanical properties.


2020 ◽  
Vol 27 ◽  
pp. 1794-1800
Author(s):  
R. Srinivasan ◽  
N. Aravindkumar ◽  
S. Aravind Krishna ◽  
S. Aadhishwaran ◽  
John George

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3737
Author(s):  
Yousef Lafi A. Alshammari ◽  
Feiyang He ◽  
Muhammad A. Khan

Three-dimensional (3D) printing is one of the significant industrial manufacturing methods in the modern era. Many materials are used for 3D printing; however, as the most used material in fused deposition modelling (FDM) technology, acrylonitrile butadiene styrene (ABS) offers good mechanical properties. It is perfect for making structures for industrial applications in complex environments. Three-dimensional printing parameters, including building orientation, layers thickness, and nozzle size, critically affect the crack growth in FDM structures under complex loads. Therefore, this paper used the dynamic bending vibration test to investigate their influence on fatigue crack growth (FCG) rate under dynamic loads and the Paris power law constant C and m. The paper proposed an analytical solution to determine the stress intensity factor (SIF) at the crack tip based on the measurement of structural dynamic response. The experimental results show that the lower ambient temperature, as well as increased nozzle size and layer thickness, provide a lower FCG rate. The printing orientation, which is the same as loading, also slows the crack growth. The linear regression between these parameters and Paris Law’s coefficient also proves the same conclusion.


Sign in / Sign up

Export Citation Format

Share Document