An Efficient Block Mode Detection Algorithm for Scalable Video Coding using Probability Model

2015 ◽  
Vol 4 (2) ◽  
pp. 42-55 ◽  
Author(s):  
L. Balaji ◽  
K.K. Thyagharajan ◽  
A. Dhanalakshmi

H.264 / AVC expansion is H.264 / SVC which is applicable in environments that demand video streaming. This paper delivers an algorithm to shorten computational complexity and extend coding efficiency by determining the mode speedily. In this writing, the authors talk a fast mode resolution algorithm with less complexity unlikely the traditional joint scalable video model (JSVM). Their algorithm end mode hunt by a probability model defined. This model is address for both intra-mode and inter-mode predictions of base layer and enhancement layers in a macro block (MB). The estimated rate distortion cost (RDC) for modes among layers is custom to determine the best mode of each MB. The experimental results show that the authors' algorithm realizes 26.9% of encoding time when compared with the JSVM reference software with smallest reduction in peak signal to noise ratio (PSNR).

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Hongtao Wang ◽  
Dong Zhang ◽  
Houqiang Li

The support for region of interest (ROI) browsing, which allows dropping background part of video bitstreams, is a desirable feature for video applications. With the help of the slice group technique provided by H.264/SVC, rectangular ROI areas can be encoded into separate ROI slices. Additionally, by imposing certain constraints on motion estimation, ROI part of the bitstream can be decoded without background slices of the same layer. However, due to the additional spatial and temporal constraints applied to the encoder, overall coding efficiency would be significantly decreased. In this paper, a rate-distortion optimized (RDO) encoding scheme is proposed to improve the coding efficiency of ROI slices. When background slices are discarded, the proposed method uses base layer information to generate the prediction signal of the enhancement layer. Thus, the temporal constraints can be loosened during the encoding process. To do it in this way, the possible mismatch between generated reference frames and original ones is also considered during rate-distortion optimization so that a reasonable trade-off between coding efficiency and decoding drift can be made. Besides, a new Lagrange multiplier derivation method is developed for further coding performance improvement. Experimental results demonstrate that the proposed method achieves significant bitrate saving compared to existing methods.


2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
Mayada Khairy ◽  
Alaa Hamdy ◽  
Amr Elsayed ◽  
Hesham Farouk

Scalable Video Coding (SVC) is an international standard technique for video compression. It is an extension of H.264 Advanced Video Coding (AVC). In the encoding of video streams by SVC, it is suitable to employ the macroblock (MB) mode because it affords superior coding efficiency. However, the exhaustive mode decision technique that is usually used for SVC increases the computational complexity, resulting in a longer encoding time (ET). Many other algorithms were proposed to solve this problem with imperfection of increasing transmission time (TT) across the network. To minimize the ET and TT, this paper introduces four efficient algorithms based on spatial scalability. The algorithms utilize the mode-distribution correlation between the base layer (BL) and enhancement layers (ELs) and interpolation between the EL frames. The proposed algorithms are of two categories. Those of the first category are based on interlayer residual SVC spatial scalability. They employ two methods, namely, interlayer interpolation (ILIP) and the interlayer base mode (ILBM) method, and enable ET and TT savings of up to 69.3% and 83.6%, respectively. The algorithms of the second category are based on full-search SVC spatial scalability. They utilize two methods, namely, full interpolation (FIP) and the full-base mode (FBM) method, and enable ET and TT savings of up to 55.3% and 76.6%, respectively.


2008 ◽  
Vol 2008 ◽  
pp. 1-27 ◽  
Author(s):  
Geert Van der Auwera ◽  
Prasanth T. David ◽  
Martin Reisslein ◽  
Lina J. Karam

The recent scalable video coding (SVC) extension to the H.264/AVC video coding standard has unprecedented compression efficiency while supporting a wide range of scalability modes, including temporal, spatial, and quality (SNR) scalability, as well as combined spatiotemporal SNR scalability. The traffic characteristics, especially the bit rate variabilities, of the individual layer streams critically affect their network transport. We study the SVC traffic statistics, including the bit rate distortion and bit rate variability distortion, with long CIF resolution video sequences and compare them with the corresponding MPEG-4 Part 2 traffic statistics. We consider (i) temporal scalability with three temporal layers, (ii) spatial scalability with a QCIF base layer and a CIF enhancement layer, as well as (iii) quality scalability modes FGS and MGS. We find that the significant improvement in RD efficiency of SVC is accompanied by substantially higher traffic variabilities as compared to the equivalent MPEG-4 Part 2 streams. We find that separately analyzing the traffic of temporal-scalability only encodings gives reasonable estimates of the traffic statistics of the temporal layers embedded in combined spatiotemporal encodings and in the base layer of combined FGS-temporal encodings. Overall, we find that SVC achieves significantly higher compression ratios than MPEG-4 Part 2, but produces unprecedented levels of traffic variability, thus presenting new challenges for the network transport of scalable video.


Author(s):  
Dan Grois ◽  
Ofer Hadar

This chapter comprehensively covers the topic of the Region-of-Interest (ROI) processing and coding for multimedia applications. The variety of end-user devices with different capabilities, ranging from cell phones with small screens and restricted processing power to high-end PCs with high-definition displays, have stimulated significant interest in effective technologies for video adaptation. Therefore, the authors make a special emphasis on the ROI processing and coding with regard to the relatively new H.264/SVC (Scalable Video Coding) standard, which have introduced various scalability domains, such as spatial, temporal, and fidelity (SNR/quality) domains. The authors’ observations and conclusions are supported by a variety of experimental results, which are compared to the conventional Joint Scalable Video Model (JSVM).


2014 ◽  
Vol 6 (2) ◽  
pp. 52-69
Author(s):  
Yueyun Shang ◽  
Dengpan Ye ◽  
Zhuo Wei ◽  
Yajuan Xie

Most of the high definition video content are still produced in a single-layer MPEG-2 format. Multiple-layers Scalable Video Coding (SVC) offers a minor penalty in rate-distortion efficiency when compared to single-layer coding MPEG-2. A scaled version of the original SVC bitstream can easily be extracted by dropping layers from the bitstream. This paper proposes a parallel transcoder from MPEG-2 to SVC video with Graphics Processing Unit (GPU), named PTSVC. The objective of the transcoder is to migrate MPEG-2 format video to SVC format video such that clients with different network bandwidth and terminal devices can seamlessly access video content. Meanwhile, the transcoded SVC videos are encrypted such that only authorized users can access corresponding SVC layers. Using various scalabilities SVC test sequences, experimental results on TM5 and JSVM indicate that PTSVC is a higher efficient transcoding system compared with previous systems and only causes little quality loss.


Author(s):  
Iraide Unanue ◽  
Inigo Urteaga ◽  
Ronaldo Husemann ◽  
Javier Del ◽  
Valter Roesler ◽  
...  

Author(s):  
Minesh Patel ◽  
Anand Darji

Extensive use of digital multimedia has led to the development of advance video processing techniques for development of multimedia applications. Application such as video surveillance requires 247 recording and streaming. So, the bandwidth and storage costs become significant. With introduction of video streaming over internet, where different kinds of end users request same content with different available bandwidth, it requires scalable video coding (SVC). These challenges can be overcome by developing new techniques to reduce redundancy in subsequent frames and to improve the coding efficiency. In this paper, overlapping weighted linear sum (OWLS) pre-processing method and its hardware architecture are proposed. It is implemented using field progrmmable gate array (FPGA) and the application specific integrated circuit (ASIC) is also developed using TSMC180nm technology standard cell library. Results show improvement in terms of power and area as compared to the existing work. In motion compensated temporal filtering (MCTF), wavelet transform is implemented by temporal filters. Architecture for 5/3 Lifting MCTF is also implemented and compared with baseline H.264 video codec. Simulation results show that the average peak signal to noise ratio (PSNR) improvement is 2.36[Formula: see text]dB. The MCTF design using 5/3 Lifting filter is synthesized for Virtex-5 FPGA and compared with the existing close-loop architecture with better performance.


2014 ◽  
Vol 687-691 ◽  
pp. 4097-4100
Author(s):  
Shun Xing Hu ◽  
Hong Tao Zhang

the temporal correlation exists between the frame and the frame in a video message, in order to solve temporal redundancy.This paper adopts motion-compensated temporal filtering method for removing temporal correlation, motion-compensated temporal filtering and Haar wavelet lifting techniques are studied and discussed; finally presented the improved motion compensated temporal filtering methods. Results show the new method improves coding efficiency and scalability.


Sign in / Sign up

Export Citation Format

Share Document