Performance Analysis of Naïve Bayes Classifier Over Similarity Score-Based Techniques for Missing Link Prediction in Ego Networks

2021 ◽  
Vol 14 (1) ◽  
pp. 110-122
Author(s):  
Anand Kumar Gupta ◽  
Neetu Sardana

Keywords Ego Network, Link Prediction, Machine Learning, Performance Analysis, Similarity Score, Social Network

Information ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 214
Author(s):  
Pokpong Songmuang ◽  
Chainarong Sirisup ◽  
Aroonwan Suebsriwichai

The current methods for missing link prediction in social networks focus on using data from overlapping users from two social network sources to recommend links between unconnected users. To improve prediction of the missing link, this paper presents the use of information from non-overlapping users as additional features in training a prediction model using a machine-learning approach. The proposed features are designed to use together with the common features as extra features to help in tuning up for a better classification model. The social network data sources used in this paper are Twitter and Facebook where Twitter is a main data for prediction and Facebook is a supporting data. For evaluations, a comparison using different machine-learning techniques, feature settings, and different network-density level of data source is studied. The experimental results can be concluded that the prediction model using a combination of the proposed features and the common features with Random Forest technique gained the best efficiency using percentage amount of recovering missing links and F1 score. The model of combined features yields higher percentage of recovering link by an average of 23.25% and the F1-measure by an average of 19.80% than the baseline of multi-social network source.


Author(s):  
Anand Kumar Gupta ◽  
Neetu Sardana

The objective of an online social network is to amplify the stream of information among the users. This goal can be accomplished by maximizing interconnectivity among users using link prediction techniques. Existing link prediction techniques uses varied heuristics such as similarity score to predict possible connections. Link prediction can be considered a binary classification problem where probable class outcomes are presence and absence of connections. One of the challenges in classification is to decide threshold value. Since the social network is exceptionally dynamic in nature and each user possess different features, it is difficult to choose a static, common threshold which decides whether two non-connected users will form interconnectivity. This article proposes a novel technique, FIXT, that dynamically decides the threshold value for predicting the possibility of new link formation. The article evaluates the performance of FIXT with six baseline techniques. The comparative results depict that FIXT achieves accuracy up to 93% and outperforms baseline techniques.


Author(s):  
Belete Biazen Bezabeh ◽  
Abrham Debasu Mengistu

In the area of machine learning performance analysis is the major task in order to get a better performance both in training and testing model. In addition, performance analysis of machine learning techniques helps to identify how the machine is performing on the given input and also to find any improvements needed to make on the learning model. Feed-forward neural network (FFNN) has different area of applications, but the epoch convergences of the network differs from the usage of transfer function. In this study, to build the model for classification and moisture prediction of soil, rectified linear units (ReLU), Sigmoid, hyperbolic tangent (Tanh) and Gaussian transfer function of feed-forward neural network had been analyzed to identify an appropriate transfer function. Color, texture, shape and brisk local feature descriptor are used as a feature vector of FFNN in the input layer and 4 hidden layers were considered in this study. In each hidden layer 26 neurons are used. From the experiment, Gaussian transfer function outperforms than ReLU, sigmoid and tanh transfer function. But the convergence rate of Gaussian transfer function took more epoch than ReLU, Sigmoid and tanh.


Sign in / Sign up

Export Citation Format

Share Document