Node Placement Strategy in Wireless Sensor Network

Author(s):  
Puteri Azwa Ahmad ◽  
M. Mahmuddin ◽  
Mohd Hasbullah Omar

The performance and quality of services in wireless sensor networks (WSNs) depend on coverage and connectivity. Node placement is a fundamental issue closely related to the coverage and connectivity in sensor networks. Node placement influences the target position, coverage area, and connectivity in sensor networks. In random deployment, sensor nodes are deployed randomly in a non-invasive way. The deployment process may cause issues like coverage holes, overlapping, and connectivity failure. Enhancing coverage and connectivity are important for sensor networks to provide a reliable communication within sensing. Placing many sensor nodes in a WSN application region area is not the best solution due to cost and it results in multiple sensors used. Mobile sensor node is used as an alternative to overcome the random deployment problem. The virtual force based self node deployment is used in the mobility sensor to improve the coverage and connectivity area. Virtual Force Algorithm (VFA) approach using virtual repulsive and attractive forces is used to find the optimal node placement to minimize the problems. Simulation results proofed that a uniform deployment achieved using VFA approach with an optimal sensing range to cover the region of interest.

2014 ◽  
Vol 8 (1) ◽  
pp. 668-674
Author(s):  
Junguo Zhang ◽  
Yutong Lei ◽  
Fantao Lin ◽  
Chen Chen

Wireless sensor networks composed of camera enabled source nodes can provide visual information of an area of interest, potentially enriching monitoring applications. The node deployment is one of the key issues in the application of wireless sensor networks. In this paper, we take the effective coverage and connectivity as the evaluation indices to analyze the effect of the perceivable angle and the ratio of communication radius and sensing radius for the deterministic circular deployment. Experimental results demonstrate that the effective coverage area of the triangle deployment is the largest when using the same number of nodes. When the nodes are deployed in the same monitoring area in the premise of ensuring connectivity, rhombus deployment is optimal when √2 < rc / rs < √3 . The research results of this paper provide an important reference for the deployment of the image sensor networks with the given parameters.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4469 ◽  
Author(s):  
Shih-Chang Huang ◽  
Fu-Gong Li

Wireless sensor networks are commonly applied in environmental monitoring applications. The crucial factor in such applications is to accurately retrieve the location of a monitoring event. Although many technologies have been proposed for target positioning, the devices used in such methods require better computational abilities or special hardware that is unsuitable for sensor networks with limited ability. Therefore, a range-free positioning algorithm, named coverage area pruning positioning system (CAPPS), is proposed in this study. First, the proposed CAPPS approach determines the area that includes the target approximately by using sensor nodes that can detect the target. Next, CAPPS uses sensor nodes that cannot detect the target to prune the area to improve positioning accuracy. The radio coverage variation is evaluated in a practical scenario, and a heuristic mechanism is proposed to reduce false positioning probability. Simulation results show that the size of the positioning area computed by CAPPS is smaller than that computed using distance vector hop, angle of arrival, and received signal strength indicator by approximately 98%, 97%, and 93%, respectively. In the radio variation scenario, the probability of determining an area excluding the target can be reduced from 50%–95% to 10%–30% by applying the proposed centroid point mechanism.


2019 ◽  
Vol 15 (10) ◽  
pp. 155014771988488
Author(s):  
Wei Cheng ◽  
Xiaolin Lu ◽  
Yong Li ◽  
Hui Wang ◽  
Lei Zhong

Coverage and connectivity in wireless sensor network have been studied extensively in existing research works with physical and information coverage. The optimal deployment to achieve both information coverage and connectivity, on arbitrary values of the ratio of rc and rs, has been studied in previous work; meanwhile, the extended strip-based deployment based on information coverage is also studied. Either information coverage or cooperative communication could exploit collaboration of sensor nodes to improve the efficiency of deployment, while how good is strip-based deployment with both information coverage and cooperative communication is worth to be measured when the value of rc/ rs is varied. In this article, the relationship between the density of sensors needed to achieve physical or information coverage and connectivity and the variety of rc/ rs is derived in closed form for strip-based deployment of wireless sensor networks with cooperative communication. Then, a summary of different combinations of coverage and connectivity is provided, that physical or information coverage with or without cooperative communication could be employed to achieve full coverage and connectivity for strip-based deployment. Finally, some new strategy could be proposed based on the fusion of physical and information coverage to improve strip-based deployment. Some numerical results are provided to show the efficiency of all schemes to help researchers design more effective deployment schemes.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Shuailiang Zhang ◽  
Xiujuan Du ◽  
Xin Liu

As the most popular way of communication technology at the moment, wireless sensor networks have been widely concerned by academia and industry and plays an important role in military, agriculture, medicine, and other fields. Identity authentication offers the first line of defence to ensure the security communication of wireless sensor networks. Since the sensor nodes are resource-limited in the wireless networks, how to design an efficient and secure protocol is extremely significant. The current authentication protocols have the problem that the sensor nodes need to execute heavy calculation and communication consumption during the authentication process and cannot resist node capture attack, and the protocols also cannot provide perfect forward and backward security and cannot resist replay attack. Multifactor identity authentication protocols can provide a higher rank of security than single-factor and two-factor identity authentication protocols. The multigateway wireless sensor networks’ structure can provide a larger communication coverage area than the single-gateway network structure, so it has become the focus of recent studies. Therefore, we design a novel multifactor authentication protocol for multigateway wireless sensor networks, which only apply the lightweight hash function and are given biometric information to achieve a higher level of security and efficiency and a larger communication coverage area. We separately apply BAN logic, random oracle model, and AVISPA tool to validate the security of our authentication protocol in Case 1 and Case 2. We put forward sixteen evaluation criteria to comprehensively evaluate our authentication protocol. Compared with the related authentication protocols, our authentication protocol is able to achieve higher security and efficiency.


2013 ◽  
Vol 4 (3) ◽  
pp. 776-787
Author(s):  
Nitin Nitin

This paper presents, Application of Gur Game Based Algorithm on Wireless Sensor Networks (WSNs) deployed to monitor Homogenous and Heterogeneous Grid in order to achieve Quality of Service (QoS) = 0.40 and 0.50. Further, the objectives of all these algorithms are to maximize the coverage of the sensor area while conserving energy consumed by sensor nodes. This is achieved via carefully activating/deactivating the sensors while maximizing the coverage area.


2018 ◽  
Vol 24 (8) ◽  
pp. 6017-6019 ◽  
Author(s):  
K. S Umadevi ◽  
Virti Shah ◽  
Unnati Desai

Sensor nodes are always considered in wireless sensor networks. So deployments of these sensor nodes are considerable, but proper deployment can decrease the complication of problems in wireless sensor networks. During such communication, data routing must be done efficiently in order to reduce the complexity. In addition, it minimizes energy consumption and thus extends the lifetime of Network. An attempt is made using Virtual Force and Particle Swarm Optimization for effective node deployment. First step, Virtual Force Algorithm is used for placement of nodes. Secondly, the result is provided to Particle Swarm Optimization to optimize the best fit between the neighbor nodes. The result depicts the proper deployment of nodes done in wireless sensor networks and improves the efficiency by minimal energy consumption.


2021 ◽  
Author(s):  
Veeramani Sonai ◽  
Indira Bharathi

Industrial Wireless Sensor Networks (IWSN) are the special class of WSN where it faces many challenges like improving process efficiency and meet the financial requirement of the industry. Most of the IWSNs contains a large number of sensor nodes over the deployment field. Due to lack of predetermined network infrastructure demands, IWSNs to deploy a minimum number of sink nodes and maintain network connectivity with other sensor nodes. Capacitated Sink Node Placement Problem (CSNPP) finds its application in the Industrial wireless sensor network (IWSN), for the appropriate placement of sink nodes. The problem of placing a minimum number of sink nodes in a weighted topology such that each sink node should have a maximum number of sensor nodes within the given capacity is known as Capacitated Sink Node Placement Problem. This chapter proposes a heuristic based approach to solve Capacitated Sink Node Placement Problem.


Author(s):  
Arpit Tripathi ◽  
Pulkit Gupta ◽  
Aditya Trivedi ◽  
Rahul Kala

The ease of use and re-configuration in a wireless network has played a key role in their widespread growth. The node deployment problem deals with an optimal placement strategy of the wireless nodes. This paper models a wireless sensor network, consisting of a number of nodes, and a unique sink to which all the information is transmitted using the shortest connecting path. Traditionally the systems have used Genetic Algorithms for optimal placement of the nodes that usually fail to give results in problems employing large numbers of nodes or higher areas to be covered. This paper proposes a hybrid Genetic Programming (GP) and Genetic Algorithm (GA) for solving the problem. While the GP optimizes the deployment structure, the GA is used for actual node placement as per the GP optimized structure. The GA serves as a slave and GP serves as master in this hierarchical implementation. The algorithm optimizes total coverage area, energy utilization, lifetime of the network, and the number of nodes deployed. Experimental results show that the algorithm could place the sensor nodes in a variety of scenarios. The placement was found to be better than random placement strategy as well as the Genetic Algorithm placement strategy.


Sign in / Sign up

Export Citation Format

Share Document