scholarly journals A Novel Positioning System Based on Coverage Area Pruning in Wireless Sensor Networks

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4469 ◽  
Author(s):  
Shih-Chang Huang ◽  
Fu-Gong Li

Wireless sensor networks are commonly applied in environmental monitoring applications. The crucial factor in such applications is to accurately retrieve the location of a monitoring event. Although many technologies have been proposed for target positioning, the devices used in such methods require better computational abilities or special hardware that is unsuitable for sensor networks with limited ability. Therefore, a range-free positioning algorithm, named coverage area pruning positioning system (CAPPS), is proposed in this study. First, the proposed CAPPS approach determines the area that includes the target approximately by using sensor nodes that can detect the target. Next, CAPPS uses sensor nodes that cannot detect the target to prune the area to improve positioning accuracy. The radio coverage variation is evaluated in a practical scenario, and a heuristic mechanism is proposed to reduce false positioning probability. Simulation results show that the size of the positioning area computed by CAPPS is smaller than that computed using distance vector hop, angle of arrival, and received signal strength indicator by approximately 98%, 97%, and 93%, respectively. In the radio variation scenario, the probability of determining an area excluding the target can be reduced from 50%–95% to 10%–30% by applying the proposed centroid point mechanism.

2014 ◽  
Vol 8 (1) ◽  
pp. 668-674
Author(s):  
Junguo Zhang ◽  
Yutong Lei ◽  
Fantao Lin ◽  
Chen Chen

Wireless sensor networks composed of camera enabled source nodes can provide visual information of an area of interest, potentially enriching monitoring applications. The node deployment is one of the key issues in the application of wireless sensor networks. In this paper, we take the effective coverage and connectivity as the evaluation indices to analyze the effect of the perceivable angle and the ratio of communication radius and sensing radius for the deterministic circular deployment. Experimental results demonstrate that the effective coverage area of the triangle deployment is the largest when using the same number of nodes. When the nodes are deployed in the same monitoring area in the premise of ensuring connectivity, rhombus deployment is optimal when √2 < rc / rs < √3 . The research results of this paper provide an important reference for the deployment of the image sensor networks with the given parameters.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaogang Qi ◽  
Xiaoke Liu ◽  
Lifang Liu

Wireless sensor networks (WSNs) are widely used in various fields to monitor and track various targets by gathering information, such as vehicle tracking and environment and health monitoring. The information gathered by the sensor nodes becomes meaningful only if it is known where it was collected from. Considering that multilateral algorithm and MDS algorithm can locate the position of each node, we proposed a localization algorithm combining the merits of these two approaches, which is called MA-MDS, to reduce the accumulation of errors in the process of multilateral positioning algorithm and improve the nodes’ positioning accuracy in WSNs. It works in more robust fashion for noise sparse networks, even with less number of anchor nodes. In the MDS positioning phase of this algorithm, the Prussian Analysis algorithm is used to obtain more accurate coordinate transformation. Through extensive simulations and the repeatable experiments under diverse representative networks, it can be confirmed that the proposed algorithm is more accurate and more efficient than the state-of-the-art algorithms.


Tracking the location of target nodes/objects plays a vital role in disaster management and emergency rescue operations. The wireless sensor network is an easiest and cheapest solution to track the target nodes/objects in emergency applications. Use of GPS installed devices in wireless sensor networks is one of the solutions to track the target node’s location. Installing GPS device on every target node is very expensive and the GPS device drains the battery power, and increases the size of sensor nodes. Localization is an alternative solution to track the target node’s location. Many localization algorithms are available to track/estimate the target node’s location coordinates, but the accuracy of the estimated target nodes is poor. A new localization technique is proposed in this work to improve the accuracy of the estimated location of the target nodes. The proposed technique uses two anchor nodes, and parameters like linear vector segments, received signal strength, and angle of arrival measures in the location estimation process. This work has been simulated in MATLAB. The proposed algorithm outperforms the existing localization techniques.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3719 ◽  
Author(s):  
Ala’ Khalifeh ◽  
Husam Abid ◽  
Khalid A. Darabkh

Wireless sensor networks (WSNs) are increasingly gaining popularity, especially with the advent of many artificial intelligence (AI) driven applications and expert systems. Such applications require specific relevant sensors’ data to be stored, processed, analyzed, and input to the expert systems. Obviously, sensor nodes (SNs) have limited energy and computation capabilities and are normally deployed remotely over an area of interest (AoI). Therefore, proposing efficient protocols for sensing and sending data is paramount to WSNs operation. Nodes’ clustering is a widely used technique in WSNs, where the sensor nodes are grouped into clusters. Each cluster has a cluster head (CH) that is used to gather captured data of sensor nodes and forward it to a remote sink node for further processing and decision-making. In this paper, an optimization algorithm for adjusting the CH location with respect to the nodes within the cluster is proposed. This algorithm aims at finding the optimal CH location that minimizes the total sum of the nodes’ path-loss incurred within the intra-cluster communication links between the sensor nodes and the CH. Once the optimal CH is identified, the CH moves to the optimal location. This suggestion of CH re-positioning is frequently repeated for new geometric position. Excitingly, the algorithm is extended to consider the inter-cluster communication between CH nodes belonging to different clusters and distributed over a spiral trajectory. These CH nodes form a multi-hop communication link that convey the captured data of the clusters’ nodes to the sink destination node. The performance of the proposed CH positioning algorithm for the single and multi-clusters has been evaluated and compared with other related studies. The results showed the effectiveness of the proposed CH positioning algorithm.


2014 ◽  
Vol 651-653 ◽  
pp. 387-390 ◽  
Author(s):  
Fu Bin Zhou ◽  
Shao Li Xue

As an important application of Internet of Things , Wireless Sensor Networks utilized in surveillance and other case.Localization of nodes in wireless sensor networks is the prerequisite and base of target tracking in some surveillance applications, so localization error of sensor nodes is a key. However, due to limited energy, unreliable link and limited communication ranges of sensor nodes, high accurate positioning is difficult to achieve, which made it hot and full of challenging for wireless sensor nodes to localize without any auxiliary facilities. Range-based localization algorithm , could achieve good accuracy but require measuring devices, thus it is not appropriate for large-scale wireless sensor networks.So range-free localization algorithms are more popular.This paper analyses the algorithms in range-free localization,and proposed Advanced Sequence-Based Localization algorithm to improve the performance of positioning algorithm in wireless sensor network.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Shuailiang Zhang ◽  
Xiujuan Du ◽  
Xin Liu

As the most popular way of communication technology at the moment, wireless sensor networks have been widely concerned by academia and industry and plays an important role in military, agriculture, medicine, and other fields. Identity authentication offers the first line of defence to ensure the security communication of wireless sensor networks. Since the sensor nodes are resource-limited in the wireless networks, how to design an efficient and secure protocol is extremely significant. The current authentication protocols have the problem that the sensor nodes need to execute heavy calculation and communication consumption during the authentication process and cannot resist node capture attack, and the protocols also cannot provide perfect forward and backward security and cannot resist replay attack. Multifactor identity authentication protocols can provide a higher rank of security than single-factor and two-factor identity authentication protocols. The multigateway wireless sensor networks’ structure can provide a larger communication coverage area than the single-gateway network structure, so it has become the focus of recent studies. Therefore, we design a novel multifactor authentication protocol for multigateway wireless sensor networks, which only apply the lightweight hash function and are given biometric information to achieve a higher level of security and efficiency and a larger communication coverage area. We separately apply BAN logic, random oracle model, and AVISPA tool to validate the security of our authentication protocol in Case 1 and Case 2. We put forward sixteen evaluation criteria to comprehensively evaluate our authentication protocol. Compared with the related authentication protocols, our authentication protocol is able to achieve higher security and efficiency.


2013 ◽  
Vol 4 (3) ◽  
pp. 776-787
Author(s):  
Nitin Nitin

This paper presents, Application of Gur Game Based Algorithm on Wireless Sensor Networks (WSNs) deployed to monitor Homogenous and Heterogeneous Grid in order to achieve Quality of Service (QoS) = 0.40 and 0.50. Further, the objectives of all these algorithms are to maximize the coverage of the sensor area while conserving energy consumed by sensor nodes. This is achieved via carefully activating/deactivating the sensors while maximizing the coverage area.


2012 ◽  
Vol 241-244 ◽  
pp. 895-902
Author(s):  
Ming Zhu ◽  
Xiao Fen Yu ◽  
Jia Wen Hu ◽  
Biao Wang

Wireless Sensor Networks (WSN) has been increasingly used in various fields of modern production and life, such as industrial control and environmental monitoring. However, there is no effective and universal algorithm at present for optimizing the deployment of WSN nodes in buildings. The main reason is the complex environment of the monitoring region which brings about the difficulty in determining the attenuation of wireless signal. The relationship between the Received Signal Strength Indicator (RSSI) and Packet Error Rate (PER) are discovered by the experimental method, then the corresponding mathematical model is also established by the experimental data. Based on different PER value, one method for optimizing the deployment of nodes in buildings is proposed by the RSSI value of the sensor node. This method can use fewer sensor nodes to cover the required monitoring region, which has the advantage of low-cost network construction, easy maneuverability and good versatility and et al. Finally, the deployment method of sensor nodes and the deployment example of temperature and humidity monitoring system are given in the paper.


2014 ◽  
Vol 8 (1) ◽  
pp. 658-663
Author(s):  
Jianjun Lang ◽  
Qigang Jiang

Wireless sensor network (WSN) consists of massive small sensor nodes which are located in monitoring region, the target of which is to cooperatively sense, collect and process the information of objects in the coverage area, then send the information to the observer through wireless communication. It can be widely used in military applications, medical treatment, traffic, environment monitoring and so on. Medium Access Control (MAC) Protocol, which decides how to share the wireless channel, allocates the limited communication resource among nodes and a good MAC protocol can save lots of energy and reduce collision. Firstly the thesis analyzed the research background and the current situation at home and abroad, and then discussed the structural characteristics of wireless sensor networks and other content, in which indicating the energy consumption of the wireless sensor network; Then, the thesis compared and analyzed the MAC protocols of the wireless sensor Network, focusing on competition-based MAC protocol S-MAC protocol in detail. From the shortcomings of the thesis proposed a new study of the improved protocol basing on the random work sleep scheduling mechanism; Finally, the thesis simulated the improving the MAC protocol, showing that the performances of the improved protocol are better than the original in improving energy efficiency, delay, throughput and so on from the analysis of simulation results.


Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


Sign in / Sign up

Export Citation Format

Share Document