A Cross-Layer Design for Video Streaming Over 802.11e HCCA Wireless Network

Author(s):  
Hongli Luo

Video transmission over wireless networks has quality of service (QoS) requirements and the time-varying characteristics of wireless channels make it a challenging task. IEEE 802.11 Wireless LAN has been widely used for the last mile connection for multimedia transmission. In this paper, a cross-layer design is presented for video streaming over IEEE 802.11e HCF Controlled Channel Access (HCCA) WLAN. The goal of the cross-layer design is to improve the quality of the video received in a wireless network under the constraint of network bandwidth. The approach is composed of two algorithms. First, an allocation of optimal TXOP is calculated which aims at maintaining a short queuing delay at the wireless station at the cost of a small TXOP allocation. Second, the transmission of the packets is scheduled according to the importance of the packets in order to maximize the visual quality of video. The approach is compared with the standard HCCA on NS2 simulation tools using H.264 video codec. The proposed cross-layer design outperforms the standard approach in terms of the PSNRs of the received video. This approach reduces the packet loss to allow the graceful video degradation, especially under heavy network traffic.

Author(s):  
Hongli Luo

Video transmission over wireless networks has quality of service (QoS) requirements and the time-varying characteristics of wireless channels make it a challenging task. IEEE 802.11 Wireless LAN has been widely used for the last mile connection for multimedia transmission. In this paper, a cross-layer design is presented for video streaming over IEEE 802.11e HCF Controlled Channel Access (HCCA) WLAN. The goal of the cross-layer design is to improve the quality of the video received in a wireless network under the constraint of network bandwidth. The approach is composed of two algorithms. First, an allocation of optimal TXOP is calculated which aims at maintaining a short queuing delay at the wireless station at the cost of a small TXOP allocation. Second, the transmission of the packets is scheduled according to the importance of the packets in order to maximize the visual quality of video. The approach is compared with the standard HCCA on NS2 simulation tools using H.264 video codec. The proposed cross-layer design outperforms the standard approach in terms of the PSNRs of the received video. This approach reduces the packet loss to allow the graceful video degradation, especially under heavy network traffic.


2013 ◽  
Vol 303-306 ◽  
pp. 1933-1938
Author(s):  
Yun Feng Wang ◽  
Hong Bing Ma

As an extension to H.264, Scalable Video Coding (SVC) provides three types of scalability, which makes it more suitable for the video transmission over wireless networks. IEEE 802.11e introduces EDCA mechanism to support Quality of Service (QoS). In this paper, a scheme, based on cross-layer design between application layer and MAC layer, is proposed to improve SVC transmission over 802.11e networks. With optimized mapping mechanism and queue management, the approach has taken the SVC video priority and network congestion status into consideration. Simulation demonstrates the effectiveness of the algorithm. The experimental results show that our approach can get full use of the limited wireless channel resources, by which SVC packets with high priority can obtain better protection, thus the decoding video quality can be significantly improved.


2007 ◽  
Vol 3 (4) ◽  
pp. 225 ◽  
Author(s):  
Chong Shen

In this paper, we address mobility management for 4th generation heterogeneous networks from a quality of service (QoS), optimisation and cross layer design perspective. Users are classified as high profile, normal profile and low profile according to their differentiated service requirements. Congestion avoidance control and adaptive handover mechanisms are implemented for efficient cooperation within the mobile heterogeneous network environment consisting of a TDMA network, ad hoc network and relay nodes. A previous proposed routing algorithm is also revised to include mobility management.


With traffic increase in a wireless network beyond its capacity and as the number of connected devices continue to grow, the quality of service (QoS) degrades. In this paper we study the impact of mobility on throughput in the case of an infrastructure wireless network using IEEE 802.11 Wi-Fi standard. Since we found in the literature that the mobility of stations can have an impact on the quality of service, we try to remedy to this by implementing a new access category reserved for mobile stations. First we compare the throughput between static and mobile nodes, both connected to a QoS station. Then we propose our new model that consists of adding a new access category used by mobile nodes regardless of their traffic category. The study was made by simulating different scenarios using Network Simulator-3 (NS-3). We found that the throughput may vary depending on the simulation scenario. The simulation results show that with the proposed solution the mobile nodes can have a better throughput.


Author(s):  
Shahin Vakilinia ◽  
Mohammadhossein Alvandi ◽  
Mohammadreza Khalili Shoja ◽  
Iman Vakilinia

In this paper, Cross-layer design has been used to provide quality of service (QoS) and security at the same time for VOIP over the wireless ad-hoc network. In this paper the authors extend their previous work (i.e. Multi-path Multi-Channel Protocol Design for Secure QoS-Aware VOIP in Wireless Ad-Hoc Networks) by adding transport and application layers considerations. The goal of this paper is to support QoS and security of VOIP simultaneously. Simulation results shows that the proposed cross-layered protocol stack design significantly improve QoS parameters of the VOIP calls under the jamming or Denial-of-service attacks.


Sign in / Sign up

Export Citation Format

Share Document