Adaptive Neuro-Fuzzy Control Approach Based on Particle Swarm Optimization

2010 ◽  
Vol 1 (4) ◽  
pp. 1-16
Author(s):  
Gomaa Zaki El-Far

This paper proposes a modified particle swarm optimization algorithm (MPSO) to design adaptive neuro-fuzzy controller parameters for controlling the behavior of non-linear dynamical systems. The modification of the proposed algorithm includes adding adaptive weights to the swarm optimization algorithm, which introduces a new update. The proposed MPSO algorithm uses a minimum velocity threshold to control the velocity of the particles, avoids clustering of the particles, and maintains the diversity of the population in the search space. The mechanism of MPSO has better potential to explore good solutions in new search spaces. The proposed MPSO algorithm is also used to tune and optimize the controller parameters like the scaling factors, the membership functions, and the rule base. To illustrate the adaptation process, the proposed neuro-fuzzy controller based on MPSO algorithm is applied successfully to control the behavior of both non-linear single machine power systems and non-linear inverted pendulum systems. Simulation results demonstrate that the adaptive neuro-fuzzy logic controller application based on MPSO can effectively and robustly enhance the damping of oscillations.

Author(s):  
Gomaa Zaki El-Far

This paper proposes a modified particle swarm optimization algorithm (MPSO) to design adaptive neuro-fuzzy controller parameters for controlling the behavior of non-linear dynamical systems. The modification of the proposed algorithm includes adding adaptive weights to the swarm optimization algorithm, which introduces a new update. The proposed MPSO algorithm uses a minimum velocity threshold to control the velocity of the particles, avoids clustering of the particles, and maintains the diversity of the population in the search space. The mechanism of MPSO has better potential to explore good solutions in new search spaces. The proposed MPSO algorithm is also used to tune and optimize the controller parameters like the scaling factors, the membership functions, and the rule base. To illustrate the adaptation process, the proposed neuro-fuzzy controller based on MPSO algorithm is applied successfully to control the behavior of both non-linear single machine power systems and non-linear inverted pendulum systems. Simulation results demonstrate that the adaptive neuro-fuzzy logic controller application based on MPSO can effectively and robustly enhance the damping of oscillations.


2011 ◽  
Vol 110-116 ◽  
pp. 3215-3222 ◽  
Author(s):  
M. Montazeri-Gh ◽  
E. Mohammadi ◽  
S. Jafari

This paper presents the application of Particle Swarm Optimization (PSO) algorithm for optimization of the Gas Turbine Engine (GTE) fuel control system. In this study, the Wiener model for GTE as a block structure model is firstly developed. This representation is an appropriate model for controller tuning. Subsequently, based on the nonlinear GTE nature, a Fuzzy Logic Controller (FLC) with an initial rule base is designed for the engine fuel system. Then, the initial FLC is tuned by PSO with emphasis on the engine safety and time response. In this study, the optimization process is performed in two stages during which the Data Base (DB) and the Rule Base (RB) of the initial FLC are tuned sequentially. The results obtained from the simulation show the ability of the approach to achieve an acceptable time response and to attain a safe operation by limiting the turbine rotor acceleration.


Sign in / Sign up

Export Citation Format

Share Document