scholarly journals Artificial neural networks to control chlorine dosing in a water treatment plant

2018 ◽  
Vol 40 (1) ◽  
pp. 37275
Author(s):  
André Felipe Librantz ◽  
Fábio Cosme Rodrigues dos Santos ◽  
Cleber Gustavo Dias
2019 ◽  
Vol 9 (3) ◽  
pp. 4176-4181
Author(s):  
A. S. Kote ◽  
D. V. Wadkar

Coagulation and chlorination are complex processes of a water treatment plant (WTP). Determination of coagulant and chlorine dose is time-consuming. Many times WTP operators in India determine the coagulant and chlorine dose approximately using their experience, which may lead to the use of excess or insufficient dose. Hence, there is a need to develop prediction models to determine optimum chlorine and coagulant doses. In this paper, artificial neural networks (ANN) are used for prediction due to their ability to learn and model non-linear and complex relationships. Separate ANN models for chlorine and coagulant doses are explored with radial basis neural network (RBFNN), feed-forward neural network (FFNN), cascade feed forward neural network (CFNN) and generalized regression neural network (GRNN). For modeling, daily water quality data of the last four years are collected from the plant laboratory of WTP in Maharashtra (India). In order to improve performance, these models are established by varying input variables, hidden nodes, training functions, spread factor, and epochs. The best models are selected based on the comparison of performance measures. It is observed that the best performing chlorine dose model using defined statistics is found to be RBFNN with R=0.999. Similarly, the CFNN coagulant dose model with Bayesian regularization (BR) training function provided excellent estimates with network architecture (2-40-1) and R=0.947. Based on the above models, two graphical user interfaces (GUIs) were developed for real-time prediction of chlorine and coagulant dose, which will be useful for plant operators and decision makers.


2008 ◽  
Vol 8 (4) ◽  
pp. 383-388
Author(s):  
H.-J. Mälzer ◽  
S. Strugholtz

The applicability of Artificial Neural Networks (ANN) for process and costs optimization in drinking water treatment by coagulation, sedimentation and rapid filtration was investigated. The results showed that besides a considerable cost reduction, an improvement of process safety and stability can be expected. For further testing, the ANN will be installed at a water treatment plant for online coagulation control and process optimization.


2020 ◽  
Vol 20 (8) ◽  
pp. 3301-3317
Author(s):  
Rafael Paulino ◽  
Pierre Bérubé

Abstract Artificial neural networks (ANNs) are increasingly being used in water treatment applications because of their ability to model complex systems. The present study proposed a framework to develop and validate ANNs for drinking water treatment and distribution system water quality applications. The framework was used to develop ANNs to identify the optimal ozone dose required for effective UV disinfection and to meet regulatory requirements for disinfection by-products (DBPs) in the distribution system. Treatment at a full-scale treatment plant was successfully modelled, with treated water UV transmittance as the output variable. ANNs could be used to identify operating setpoints that minimize operating costs for effective disinfection during drinking water treatment. However, because of the limited data available to train and validate the distribution system ANNs (i.e. n = 48; 15 years of quarterly measurements), these could not be used to reliably identify operating setpoints that also ensure compliance with DBP regulations.


2004 ◽  
Vol 4 (5-6) ◽  
pp. 87-94 ◽  
Author(s):  
S. Deveughèle ◽  
Z. Do-Quang

The problem under study was the on-line prediction of the optimal coagulant dose from raw water parameters; it has been tackled by using powerful modeling tools: Artificial Neural Networks (ANNs). Such tools do not rely on physico-chemical relationships; the model is built by using an historical dataset available on the plant (raw water parameters and Jar-tests data). A prototype has been implemented on a full-scale water treatment plant in France. The approach is explained, some relevant results are shown and the industrial benefits are discussed. The expected OPEX reduction (coagulant) is about 10%.


1999 ◽  
Vol 40 (7) ◽  
pp. 55-65 ◽  
Author(s):  
Mohamed F. Hamoda ◽  
Ibrahim A. Al-Ghusain ◽  
Ahmed H. Hassan

Proper operation of municipal wastewater treatment plants is important in producing an effluent which meets quality requirements of regulatory agencies and in minimizing detrimental effects on the environment. This paper examined plant dynamics and modeling techniques with emphasis placed on the digital computing technology of Artificial Neural Networks (ANN). A backpropagation model was developed to model the municipal wastewater treatment plant at Ardiya, Kuwait City, Kuwait. Results obtained prove that Neural Networks present a versatile tool in modeling full-scale operational wastewater treatment plants and provide an alternative methodology for predicting the performance of treatment plants. The overall suspended solids (TSS) and organic pollutants (BOD) removal efficiencies achieved at Ardiya plant over a period of 16 months were 94.6 and 97.3 percent, respectively. Plant performance was adequately predicted using the backpropagation ANN model. The correlation coefficients between the predicted and actual effluent data using the best model was 0.72 for TSS compared to 0.74 for BOD. The best ANN structure does not necessarily mean the most number of hidden layers.


Sign in / Sign up

Export Citation Format

Share Document