Orientation Control of Perovskite Epitaxial Thin Film on Silicon Substrate with Yttria-Stabilized Zirconia Buffer Layers

Author(s):  
Masao Kondo ◽  
Kazuaki Kurihara
2006 ◽  
Vol 320 ◽  
pp. 69-72 ◽  
Author(s):  
Masao Kondo ◽  
Kazuaki Kurihara

The influence of a rare earth oxide/yttria-stabilized zirconia (YSZ) double buffer layer structure on the orientation of a perovskite thin film was investigated on (100) silicon substrates. A calcium titanate perovskite film with a mixture of (110) and (100) orientation was grown epitaxially on a YSZ buffer layer. Since rare earth oxides have almost the same chemical nature and different lattice parameters, it is anticipated that the lattice parameter of the buffer layer can be controlled by changing the rare earth element. An (100) oriented epitaxial calcium titanate film was obtained by changing the composition of rare earth oxides on the YSZ/Si substrate.


2009 ◽  
Vol 12 (9) ◽  
pp. J73 ◽  
Author(s):  
Shinya Teranishi ◽  
Kyohei Kondo ◽  
Masakazu Nishida ◽  
Wataru Kanematsu ◽  
Takashi Hibino

2000 ◽  
Vol 15 (5) ◽  
pp. 1110-1119 ◽  
Author(s):  
T. G. Holesinger ◽  
S. R. Foltyn ◽  
P. N. Arendt ◽  
H. Kung ◽  
Q. X. Jia ◽  
...  

The microstructural development of YBa2Cu3Oy (Y-123) coated conductors based on the ion-beam-assisted deposition (IBAD) of yttria-stabilized zirconia (YSZ) to produce a biaxially textured template is presented. The architecture of the conductors was Y-123/CeO2/IBAD YSZ/Inconel 625. A continuous and passivating Cr2O3 layer forms between the YSZ layer and the Inconel substrate. CeO2 and Y-123 are closely lattice-matched, and misfit strain is accommodated at the YSZ/CeO2 interface. Localized reactions between the Y-123 film and the CeO2 buffer layer result in the formation of BaCeO3, YCuO2, and CuO. The positive volume change that occurs from the interfacial reaction may act as a kinetic barrier that limits the extent of the reaction. Excess copper and yttrium generated by the interfacial reaction appear to diffuse along grain boundaries and intercalate into Y-123 grains as single layers of the Y-247, Y-248, or Y-224 phases. The interfacial reactions do not preclude the attainment of high critical currents (Ic) and current densities (Jc) in these films nor do they affect to any appreciable extent the nucleation and alignment of the Y-123 film.


2020 ◽  
Vol 8 (34) ◽  
pp. 11704-11714
Author(s):  
You Jin Kim ◽  
Shinya Konishi ◽  
Yuichiro Hayasaka ◽  
Ryo Ota ◽  
Ryosuke Tomozawa ◽  
...  

Epitaxial TmFe2O4 thin film with self-assembled interface structure was grown on yttria-stabilized zirconia substrate. TmFe2O4 phase itself shows glassy behavior and the interface leads to the exchange bias effect.


Sign in / Sign up

Export Citation Format

Share Document