Effect of Cutting Tool Materials on Surface Roughness and Cutting Forces in Machining of Al-Si3N4 Composite Produced by Powder Metallurgy

Author(s):  
Yusuf Ozcatalbas ◽  
Ersin Bahceci ◽  
Mehmet Turker
2007 ◽  
Vol 534-536 ◽  
pp. 869-872 ◽  
Author(s):  
Yusuf Ozcatalbas ◽  
Ersin Bahceci ◽  
Mehmet Turker

In this study, aluminum-based composites reinforced with various amounts of α-Si3N4 were produced by powder metallurgy (P/M). The machinability properties of MMCs were determined by means of cutting forces and surface roughness. Machining tests were carried out by using PCD and K10 cutting tools. Increasing of Si3N4 volume fraction in the matrix resulted in a decrease of the surface roughness and turning forces. PCD cutting tools showed better cutting performance than K10 tools. Surface roughness and turning forces were decreased significantly by PCD tool.


2016 ◽  
Vol 693 ◽  
pp. 680-685 ◽  
Author(s):  
Wang Hui ◽  
Pei Quan Guo ◽  
Yang Qiao ◽  
Jin Tao Niu

The application of Ni-based powder metallurgy superalloys materials was limited for its' difficult-to-machine, such as excessive tool wear, frequent tool change, short tool life, low productivity, and large amount of power consumption etc. So the studying of Ni-based powder metallurgy superalloys drilling process becomes extremely important. This paper mainly introduces the research status of drilling of Ni-based powder metallurgy superalloys materials and through synthesize considering cutting force and cost effective, we determined the optimal of cutting tool materials is carbide YG8 twist drill. The optimal parameters of drilling of Ni-based powder metallurgy superalloys: cutting speed of 15m/min, feed per tooth of 0.02mm/r. When the superalloys material is machined by standard twist drill, it is always appearing the failure modes of drilling.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Berend Denkena ◽  
Bernd Breidenstein ◽  
Alexander Krödel ◽  
Benjamin Bergmann ◽  
Tobias Picker ◽  
...  

Abstract This study presents an investigation of the usability and suitability of natural rocks as cutting tool materials. Therefore, indexable inserts are manufactured from eight different rocks and two mono minerals in this study and are used for turning of an aluminium alloy. Besides that, a characterization of the rock properties is performed. The wear of the rock tools and the surface roughness of the workpiece generated by the tools are used to evaluate their operational behaviour. Subsequently, the rock properties and the corresponding operational behaviour are used to assess the suitability of the rocks as cutting tool material. The results show that rock inserts can be used as cutting material for the turning of an aluminium alloy showing a width of wear marks between 83 and 1665 µm at the flank face after a cutting length of 500 m depending on the rock used. Furthermore, it is shown that rock tools are able to achieve surface roughness values which are comparable to those obtainable by using a conventional cemented carbide insert. The study shows that natural rocks can generally be used as alternative cutting material for the turning of aluminium. In addition a possible way for a systematic investigation and assessment of the suitability of natural rocks as cutting tool materials is presented, the relevance of the rock properties for the operational behaviour of the rock inserts is described and relevant future research topics concerning the use of rocks as cutting tool material are identified. Article highlights Demonstrating the possibility to use natural rocks as alternative environmentally friendly cutting tool material. Evaluation of operational behaviour and wear mechanisms of rock tools in turning aluminium. Identification of rock properties relevant for the operational behaviour of rock inserts.


Metal Cutting ◽  
2000 ◽  
pp. 227-249 ◽  
Author(s):  
Edward M. Trent ◽  
Paul K. Wright

2004 ◽  
Vol 471-472 ◽  
pp. 221-224 ◽  
Author(s):  
Jian Xin Deng ◽  
Tong Kun Cao ◽  
Jia Lin Sun

Al2O3/TiC ceramic tool materials with the addition of solid lubricants such as BN and CaF2 were produced by hot pressing. Effect of the solid lubricants on the microstructure and mechanical properties has been studied. Results showed that AlN phase resulted from the reaction of Al2O3 with BN was formed in Al2O3/TiC/BN composite after sintering. Significant micro-cracks resulted from the residual stress owing to the difference in the thermal expansion coefficient were found on the polished surface, and caused large mechanical properties degradation. While Al2O3/TiC/CaF2 composite showed higher flexural strength, fracture toughness, and hardness compared with that of Al2O3/TiC/BN composite owing its porosity absent and finer microstructure.


Sign in / Sign up

Export Citation Format

Share Document