Microstructure and Performance of Porous Ni-Cr Alloy Bonded Diamond Grinding Wheel

Author(s):  
Hong Hua Su ◽  
Hong Jun Xu ◽  
Bing Xiao ◽  
Yu Can Fu ◽  
Jiu Hua Xu
2006 ◽  
Vol 532-533 ◽  
pp. 373-376 ◽  
Author(s):  
Hong Hua Su ◽  
Hong Jun Xu ◽  
Bing Xiao ◽  
Yu Can Fu ◽  
Jiu Hua Xu

Although the porous metal bonded diamond grinding wheel, which has recently been developed, had an excellent grinding performance for hard-brittle materials, its applications were only in precision grinding in past study. A new method for fabricating the new porous metal bonded diamond grinding wheel by Ni-Cr alloy as bond and vacuum loose powder sintering was proposed in this paper. The morphology of cross section of the segments and microstructure of interface between diamond grits and bond were analyzed. The wetting mechanism between Ni-Cr alloy bond and diamond is reacting wetting. Machining performance experiments about grinding ratio and surface roughness have been carried out. The testing results show that the porous Ni-Cr alloy bonded diamond grinding wheel has certainly fine machining performance in high grinding force occasion, and the maximal grinding ratio and best surface roughness were 6660 and 1.08 m, respectively.


2008 ◽  
Vol 389-390 ◽  
pp. 36-41
Author(s):  
Feng Wei Huo ◽  
Dong Ming Guo ◽  
Ren Ke Kang ◽  
Zhu Ji Jin

A 3D profiler based on scanning white light interferometry with a lateral sampling interval of 0.11μm was introduced to measure the surface topography of a #3000 diamond grinding wheel, and a large sampling area could be achieved by its stitching capability without compromising its lateral or vertical resolution. The protrusion height distribution of diamond grains and the static effective grain density of the grinding wheel were derived, and the wheel chatter and the deformation of the wheel were analyzed as well. The study shows that the grain protrusion height obeys an approximate normal distribution, the static effective grain density is much lower than the theoretical density, and only a small number of diamond grains are effective in the grinding process with fine diamond grinding wheel. There exists waviness on the grinding wheel surface parallel with the wheel cutting direction. The cutting surface of the grinding wheel is not flat but umbilicate, which indicates that the elastic deformation at the wheel edges is much larger than in the center region.


1989 ◽  
Vol 55 (512) ◽  
pp. 1106-1109
Author(s):  
Yoongyo JUNG ◽  
Ichiro INASAKI ◽  
Satoshi MATSUl

2014 ◽  
Vol 22 (12) ◽  
pp. 3167-3174 ◽  
Author(s):  
崔长彩 CUI Chang-cai ◽  
余卿 YU Qing ◽  
张遨 ZHANG Ao ◽  
李瑞旭 LI Rui-xu ◽  
黄辉 HUANG Hui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document