Investigation on the Biomimetic Scaffold for Bone Tissue Engineering Based on Bioglass-Collagen-Hyaluronic Acid-Phosphatidylserine

Author(s):  
Xiao Feng Chen ◽  
Ying Jun Wang ◽  
Na Ru Zhao ◽  
Chun Rong Yang
2007 ◽  
Vol 330-332 ◽  
pp. 939-942 ◽  
Author(s):  
Xiao Feng Chen ◽  
Ying Jun Wang ◽  
Na Ru Zhao ◽  
Chun Rong Yang

The new type of bone tissue engineering scaffold composed of the sol-gel derived bioactive glass particles, type I collagen, hyaluronic acid and phosphatidylserine were prepared through cross-linking and freeze-drying techniques. SEM observation indicated that the scaffold possessed a 3-D interconnected porous structure and a high porosity. The properties of bio-mineralization and cells biocompatibility were investigated using SBF immersion and cells culture methods combined with SEM, XRD and FTIR techniques. The study revealed that this biomimetic scaffold possessed satisfactory functions of cells attachment, bio-mineralization, and cells biocompatibility. The porous structure and the surface of the scaffold which was covered by a bone-like HA crystal layer due to bio-mineralization were profitable for cells attachment and spread.


2012 ◽  
Vol 7 (1) ◽  
pp. 44 ◽  
Author(s):  
M. Rubert ◽  
M. Alonso-Sande ◽  
M. Monjo ◽  
J. M. Ramis

2019 ◽  
Vol 30 (3) ◽  
pp. 777-783 ◽  
Author(s):  
Daniel Goncalves Boeckel ◽  
Patrícia Sesterheim ◽  
Thiago Rodrigues Peres ◽  
Adolpho Herbert Augustin ◽  
Krista Minéia Wartchow ◽  
...  

2017 ◽  
Vol 80 ◽  
pp. 232-242 ◽  
Author(s):  
Qian Wang ◽  
Yanyan Chu ◽  
Jianxin He ◽  
Weili Shao ◽  
Yuman Zhou ◽  
...  

Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 902
Author(s):  
Madhumita Patel ◽  
Won-Gun Koh

Composite hydrogels with electrospun nanofibers (NFs) have recently been used to mimic the native extracellular matrix. In this study, composite hydrogels of methacrylated hyaluronic acid containing fragmented polycaprolactone NFs were used for bone tissue engineering. The composite (NF/hydrogel) was crosslinked under ultraviolet (UV) light. The incorporation of fragmented polycaprolactone NFs increased the compression modulus from 1762.5 to 3122.5 Pa. Subsequently, adipose-derived stem cells incorporated into the composite hydrogel exhibited a more stretched and elongated morphology and osteogenic differentiation in the absence of external factors. The mRNA expressions of osteogenic biomarkers, including collagen 1 (Col1), alkaline phosphatase, and runt-related transcription factor 2, were 3–5-fold higher in the composite hydrogel than in the hydrogel alone. In addition, results of the protein expression of Col1 and alizarin red staining confirmed osteogenic differentiation. These findings suggest that our composite hydrogel provides a suitable microenvironment for bone tissue engineering.


2014 ◽  
Vol 86 (12) ◽  
pp. 1911-1922 ◽  
Author(s):  
Hyo Seung Park ◽  
Su Yeon Lee ◽  
Hyunsik Yoon ◽  
Insup Noh

Abstract Design of micro-patterning of hydrogel is of critical importance in both understanding cellular behaviors and mimicking controlled microenvironments and architectures of diverse well-organized tissues. After micro-patterning of hyaluronic acid (HA) hydrogel on a poly(dimethyl siloxane) substrate, its physical and biological properties have been compared with those of a non-patterned hydrogel for its possible applications in bone tissue engineering. The micro-patterned morphologies of HA hydrogel in both swollen and dehydrated forms have been observed with light microscope and scanning electron microscope, respectively, before and after in vitro cell culture. When MC3T3 bone cells were in vitro cultured on both HA hydrogels, the micro-patterned one shows excellence in cell proliferation and lining for 7 days along the micro-pattern paths over those of the non-patterned one, which have shown less cell-adhesiveness. The cytotoxicity of the micro-patterned HA hydrogels was in vitro evaluated by the assays of MTT, BrdU and Neutral red. The viability and morphology of MC3T3 cells on both HA hydrogels were observed with a fluorescence microscope by the live & dead assay, where their viability was confirmed by staining of F-actin development. The results of their H&E staining showed that both micro-patterned and non-patterned hydrogels induced development of tissue regeneration as observed by cell attachment, proliferation, and survivability, but the micro-patterned one induced distinctive patterning of both better initial cells adhesion on the micro-patterns and subsequently development of their proliferation and extracellular matrix, which were considered as important characteristics in their applications to tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document