scholarly journals Composite Hydrogel of Methacrylated Hyaluronic Acid and Fragmented Polycaprolactone Nanofiber for Osteogenic Differentiation of Adipose-Derived Stem Cells

Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 902
Author(s):  
Madhumita Patel ◽  
Won-Gun Koh

Composite hydrogels with electrospun nanofibers (NFs) have recently been used to mimic the native extracellular matrix. In this study, composite hydrogels of methacrylated hyaluronic acid containing fragmented polycaprolactone NFs were used for bone tissue engineering. The composite (NF/hydrogel) was crosslinked under ultraviolet (UV) light. The incorporation of fragmented polycaprolactone NFs increased the compression modulus from 1762.5 to 3122.5 Pa. Subsequently, adipose-derived stem cells incorporated into the composite hydrogel exhibited a more stretched and elongated morphology and osteogenic differentiation in the absence of external factors. The mRNA expressions of osteogenic biomarkers, including collagen 1 (Col1), alkaline phosphatase, and runt-related transcription factor 2, were 3–5-fold higher in the composite hydrogel than in the hydrogel alone. In addition, results of the protein expression of Col1 and alizarin red staining confirmed osteogenic differentiation. These findings suggest that our composite hydrogel provides a suitable microenvironment for bone tissue engineering.

RSC Advances ◽  
2015 ◽  
Vol 5 (67) ◽  
pp. 54551-54562 ◽  
Author(s):  
Gracielle F. Andrade ◽  
Juliana L. Carvalho ◽  
Armando S. C. Júnior ◽  
Alfredo M. Goes ◽  
Edésia M. B. Sousa

Adipose-derived stem cells (ASCs) are currently a point of focus for bone tissue engineering applications.


Author(s):  
Mengru Zhu ◽  
Yang Liu ◽  
Hongzhi Qin ◽  
Shuang Tong ◽  
Qiang Sun ◽  
...  

AbstractExosomes exhibit great therapeutic potential in bone tissue engineering. The study aimed to investigate whether the exosomes derived from human adipose-derived stem cells (hADSCs-Exos) during different time-span of osteogenic differentiation could promote osteogenesis. The appropriate concentrations of hADSCs-Exos to enhance the proliferation, migration and osteogenesis of hADSCs-Exos were also examined. PKH67 labelled hADSCs-Exos was used to detect the internalization ability of hADSCs. The osteogenic differentiation abilities of hADSCs after treatment with hADSCs-Exos was evaluated by Alizarin red staining (ARS). The proliferation and migration of hADSCs was examined by cell counting kit-8 and wound healing assay, respectively. The expression of exosomal surface markers and osteoblast-related protein of hADSCs was assessed by Western blot. PKH67-labelled exosomes were internalized by hADSCs after 4 h incubation. ARS showed that the amount of mineralized nodules in Exo1−14d group was significantly higher than that in Exo15−28d group. hADSCs-Exos could promote the proliferation and migration capacity of hADSCs. Western blot analysis showed that after hADSCs-Exos treatment, ALP and RUNX2 were significantly enhanced. Specially, the Exo1−14d group of 15 μg/mL significantly upregulated the expression of RUNX2 than the other exosomes treated groups. Our findings suggest that exosomes secreted by hADSCs during osteogenic induction for 1–14 days could be efficiently internalized by hADSCs and could induce osteogenic differentiation of hADSCs. Moreover, administration of Exo1−14d at 15 μg/mL promoted the proliferation and migration of hADSCs. In conclusion, our research confirmed that comprised of hADSCs-Exos and hADSCs may provide a new therapeutic paradigm for bone tissue engineering.


2014 ◽  
Vol 2 (23) ◽  
pp. 3609-3617 ◽  
Author(s):  
Haifeng Zeng ◽  
Xiyu Li ◽  
Fang Xie ◽  
Li Teng ◽  
Haifeng Chen

A novel approach for labelling and tracking BMSCs in bone tissue engineering by using dextran-coated fluorapatite nanorods doped with lanthanides.


2019 ◽  
Vol 7 (5) ◽  
pp. 1973-1983 ◽  
Author(s):  
Qianmin Ou ◽  
Yingling Miao ◽  
Fanqiao Yang ◽  
Xuefeng Lin ◽  
Li-Ming Zhang ◽  
...  

In bone tissue engineering, it is important for biomaterials to promote the osteogenic differentiation of stem cells to achieve tissue regeneration.


2019 ◽  
Vol 30 (3) ◽  
pp. 777-783 ◽  
Author(s):  
Daniel Goncalves Boeckel ◽  
Patrícia Sesterheim ◽  
Thiago Rodrigues Peres ◽  
Adolpho Herbert Augustin ◽  
Krista Minéia Wartchow ◽  
...  

2014 ◽  
Vol 356 (1) ◽  
pp. 97-107 ◽  
Author(s):  
Wei Lu ◽  
Kun Ji ◽  
Jennifer Kirkham ◽  
Yu Yan ◽  
Aldo R. Boccaccini ◽  
...  

2008 ◽  
Vol 84A (1) ◽  
pp. 191-197 ◽  
Author(s):  
Natsuko Kakudo ◽  
Ayuko Shimotsuma ◽  
Shogo Miyake ◽  
Satoshi Kushida ◽  
Kenji Kusumoto

Sign in / Sign up

Export Citation Format

Share Document