First-Principles Calculations of Grain Boundary-Surface for Various Grain Boundaries with Different Energies in Aluminum

Author(s):  
Tokuteru Uesugi ◽  
Y. Inoue ◽  
Yorinobu Takigawa ◽  
Kenji Higashi
1998 ◽  
Vol 527 ◽  
Author(s):  
O. Schneeweiss ◽  
I. Turek ◽  
J. Čermák ◽  
P. Lejček

ABSTRACTLocation of diffused 57Co atoms in single crystals, bicrystals and polycrystals of pure iron and Fe72Al28alloy were investigated by means of emission Mössbauer spectroscopy. To interpret the results, first principles calculations of iron atom magnetic moments and hyper-fine field were carried out. From comparison of M6ssbauer spectra of single crystals with those of bicrystals and polycrystals, an information about grain boundary positions occupied by diffusing atoms is obtained. It is shown that about 5% of the diffusing atoms at the {112} grain boundary of iron are located at the positions either having impurity atoms in the nearest neighbourhood or characterized by larger atomic spacing in comparison with the bulk. In the Fe72Al28 a dominating portion of diffusing atoms have different surrounding than in grain volume. An enrichment of grain boundaries by aluminum could explain their hyperfine parameters.


2007 ◽  
Vol 551-552 ◽  
pp. 331-336 ◽  
Author(s):  
Tokuteru Uesugi ◽  
Y. Inoue ◽  
Yorinobu Takigawa ◽  
Kenji Higashi

The grain boundary surface is the excess energy of the grain boundary as the lattice on one side of the grain is translated relative to the lattice on the other side of the grain. The maximum in the slope of the grain boundary surface determines the ideal shear strength for the grain boundary sliding. We presented the ideal shear strength for the grain boundary sliding in aluminum Σ3(11 2)[110] tilt grain boundary from the first-principles calculations. The ideal shear strength for the grain boundary sliding was much smaller than the ideal shear strength of a perfect single crystal.


1990 ◽  
Vol 213 ◽  
Author(s):  
K. Hampel ◽  
D.D. Vvedensky ◽  
S. Crampin

ABSTRACTA detailed understanding of planar defects plays an important role in the search for a comprehensive description of the mechanical behaviour of metals and alloys. We present calculations for isolated stacking faults and grain boundaries using the layer Korringa-Kohn-Rostoker method including an assessment of the force theorem, which has already proven itself in evaluating defect energies for elemental close-packed metals. These ab initio total energy calculations will be supplemented by a study of the changes in bonding and local magnetic properties near a symmetric Σ5 (310) grain boundary in Fe


1990 ◽  
Vol 209 ◽  
Author(s):  
Erik C. Sowa ◽  
A. Gonis ◽  
X. -G. Zhang

ABSTRACTWe present first-principles calculations of the electronic structure of Nb grain boundaries. These are the first such calculations for a bcc metal using the real-space multiple-scattering theory (RSMST). Local densities of states near a Σ5 twist grain boundary are compared to those for bulk Nb.


2016 ◽  
Vol 18 (48) ◽  
pp. 33103-33108 ◽  
Author(s):  
Zhihai He ◽  
H. Y. He ◽  
R. Ding ◽  
B. C. Pan ◽  
J. L. Chen

The accumulation of H at the small-angle tilt grain boundary (GB) in the W(001) surface is investigated, on the basis of the first-principles calculations.


2007 ◽  
Vol 561-565 ◽  
pp. 1837-1840 ◽  
Author(s):  
Y. Inoue ◽  
Tokuteru Uesugi ◽  
Yorinobu Takigawa ◽  
Kenji Higashi

The grain boundary structure and its energy are necessary for the fundamental understanding of the physical properties of materials. In aluminum, three distinct atomic structures of a Σ9(221)[110] tilt grain boundary have been reported in previous studies using atomistic simulations and a high-resolution transmission electron microscopy (HRTEM). In this work, we studied the atomic structure and energy of the Σ9 tilt grain boundary in aluminum using first-principles calculations. A comparison of the grain boundary energies among the three distinct Σ9 tilt grain boundaries determined through first-principles calculations allowed us to identify the most stable atomic structure of Σ9 tilt grain boundary in aluminum.


2017 ◽  
Vol 25 (7) ◽  
pp. 075003 ◽  
Author(s):  
Tomoyuki Tamura ◽  
Masayuki Karasuyama ◽  
Ryo Kobayashi ◽  
Ryuichi Arakawa ◽  
Yoshinori Shiihara ◽  
...  

1997 ◽  
Vol 492 ◽  
Author(s):  
X. Chen ◽  
D. E. Ellis ◽  
G. B. Olson

For a long time, understanding the mechanisms of impurity-promoted embrittlement in iron and the consequent cohesion(decohesion) effects has been a challenge for materials scientists. The role alloying elements play in impurity-promoted embrittlement is important due to either their direct intergranular cohesion(decohesion) effects or effects upon embrittling potency of other impurities. Some alloying elements like Pd and Mo are known to be helpful for intergranular cohesion in iron and some other alloying elements like Mn are known to segregate to and weaken iron grain boundaries dramatically[1]. There have been intensive investigations on these mechanisms for a long time and especially, with the progress in computing techniques in recent years, calculations on more realistic models have become possible[2–4]. In this paper we briefly present our studies on some selected alloying-element/iron grain boundaries(GB) and free surface(FS) systems. The effects of Pd, Mo, Mn and Cr on the Fe Σ5 (031) grain boundary and its corresponding (031) free surface are examined, using a combination of molecular dynamics(MD) and first-principles electronic structure calculations. Section 2 gives a brief introduction to the methods used and Section 3 gives the main results.


Sign in / Sign up

Export Citation Format

Share Document