Femtosecond Laser-Induced Precipitation and Manipulation of Noble Metal Nanoparticles in Silicate Glass

Author(s):  
Kazuyuki Hirao ◽  
Bin Hua ◽  
Masayuki Nishi ◽  
Yasuhiko Shimotuma ◽  
Kiyotaka Miura
2007 ◽  
Vol 345-346 ◽  
pp. 1195-1200
Author(s):  
Kazuyuki Hirao ◽  
Bin Hua ◽  
Masayuki Nishi ◽  
Yasuhiko Shimotuma ◽  
Kiyotaka Miura

Femtosecond laser is a perfect laser source for materials processing when high accuracy and small structure size are required. Due to the ultra short interaction time and the high peak power, the process is generally characterized by the absence of heat diffusion and, consequently molten layers. Various induced structures have been observed in glasses after the femtosecond laser irradiation. Here, we report on space-selective precipitation and manipulation of noble metal nanoparticles in the femtosecond laser-irradiated glasses.


2021 ◽  
Vol 129 (12) ◽  
pp. 125302
Author(s):  
Wajeeha Saeed ◽  
Zeeshan Abbasi ◽  
Shumaila Majeed ◽  
Sohail Anjum Shahzad ◽  
Abdul Faheem Khan ◽  
...  

Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 107 ◽  
Author(s):  
Ming Qin ◽  
Qing Chang ◽  
Yinkai Yu ◽  
Hongjing Wu

By the deposition of noble metal nanoparticles on a metal oxide substrate with a specific micro-/nanostructure, namely, yolk-shell structure, a remarkable improvement in photocatalytic performance can be achieved by the composites. Nevertheless, noble metal nanoparticles only distribute on the surface shell of metal oxide substrates when the conventional wet-chemistry reduction approach is employed. Herein, we proposed a novel acoustic levitation synthesis of Pt nanoparticles deposited on yolk-shell La2O3. The composites not only displayed well-defined, homogeneous distribution of Pt NPs on the exterior shell of La2O3 and the interior La2O3 core, but an enhanced chemical interaction between Pt and La2O3. The unique structure not only can display improved photocatalytic degradation rate toward methyl orange, but also may show great potential in fields of hydrogen generation, environmental protection, etc. The novel acoustic levitation synthesis can supplement the methodology of synthesizing well dispersed noble metal oxides over the whole yolk-shell structure through noble metal NPs deposition method.


Sign in / Sign up

Export Citation Format

Share Document