Superplastic Deformation and Microstructure Evolution of Friction Stir Weld of 1420 Al-Li Alloy

2005 ◽  
pp. 3033-3036
Author(s):  
He Ping Guo ◽  
Xiuquan Han ◽  
Wei Wu ◽  
Zhi Qiang Li
2005 ◽  
Vol 475-479 ◽  
pp. 3033-3036 ◽  
Author(s):  
He Ping Guo ◽  
Xiu Quan Han ◽  
Wei Wu ◽  
Zhi Qiang Li

Friction stir welding is a novel welding technique which has been successfully applied in structure manufacturing of aluminium alloys (including 2XXX and 7XXX). Friction stirring in aluminium alloy welds produces a combination of very fine grain size. This paper deals with the SPF response in 1420 Al-Li alloy welds. The results showed that the friction stir weld could achieve good superplasticity performance. The lateral elongation in the weld could reach 120% and the grain size still remain the same size with little change. And the drawback in the friction weld is the obstacle to fufill the good SPF ability. During the friction stir welding, some oxides or contaminates were stired into the weld in the form of black line. When the weld was experienced superplastic deformation, the crack initiated from the line and finally reach the surface and bottom of the plate. The oxide was formed mainly in the nugget of the friction weld. So the parameters and preparation before welding must be optimized so that the weld can achieve maximum superplasticity performance.


2011 ◽  
Vol 311-313 ◽  
pp. 953-956
Author(s):  
Hao Chen ◽  
Gang Tao

In order to study dynamic response of metal, this paper makes use of theoretical formula to investigate changes of temperature and grain size on steel target after the penetration of copper jet based on data gathered from the experiments. Deformed target penetrated by copper jet could be divided into superplastic deformation zone and normal deformation zone according to the different microstructure. Temperature distribution of each deformation zones is in turn calculated by two constitutive equations. The results indicate that areas with high temperature concentrate on the narrow zone near the penetrated channel. Then, the calculation of grain size conforms to the observation. It is obviously proven that the method used in this paper is trustworthy for calculating the changes of temperature and grain size of target caused by penetration.


Sign in / Sign up

Export Citation Format

Share Document