Development of Complex Methods, Combining Thermal Treatment with Severe Plastic Deformation, for Processing of High-Strength Nanostructured Cu-1%Cr-0.7%Al Alloy

Author(s):  
Igor V. Alexandrov ◽  
V.V. Latysh ◽  
Sun Ig Hong ◽  
S.N. Faizova ◽  
V.M. Polovnikov
2006 ◽  
Vol 503-504 ◽  
pp. 515-520 ◽  
Author(s):  
Igor V. Alexandrov ◽  
V.V. Latysh ◽  
Sun Ig Hong ◽  
S.N. Faizova ◽  
V.M. Polovnikov

The current work presents new results of investigation of properties and structure of nanocrystalline and submicrocrystalline Cu-1%Cr-0.7%Al alloy. Two severe plastic deformation (SPD) techniques were applied to refine the structure: high pressure torsion and equal-channel angular pressing (ECAP). The first technique was applied to conduct preliminary studies of the alloy different thermal treatments as before SPD as well as after it. A new technological thermomechanical technique for processing of bulk billets of Cu-1%Cr-0.7%Al alloy possessing an ultrafine grained structure was developed on the basis of the obtained results. This technique comprises a combination of ECAP and other deformational processes with the thermal treatment. High values of the tensile strength and yield stress - 700 MPa and 16% accordingly – have been obtained as a result of such treatment, whereas these values after conventional treatment consisted 450 MPa and 20% respectively.


2006 ◽  
Vol 519-521 ◽  
pp. 1485-1492 ◽  
Author(s):  
Z. Horita

The process of severe plastic deformation (SPD) makes it possible to reduce the grain size to the submicrometer or nanometer range in many metallic materials. When the SPD process is applied to age hardenable alloys, it may also be possible to control aging behavior. In this study, a technique of equal-channel angular pressing (ECAP) is used as an SPD process and aging behavior is examined on the three selected Al alloy systems such as Al-Ag, Al-Mg-Si and Al-Si-Ge. The microstructures are observed using transmission electron microscopy and the mechanical properties including hardness are measured. It is shown that the SPD process introduces unusual phenomena in the precipitation process and there should be a potential for enhancement of strength over the conventional age-hardening process or for improvement of ductility while keeping the high strength.


2009 ◽  
Vol 67 ◽  
pp. 53-58
Author(s):  
V. Anil Kumar ◽  
M.K. Karthikeyan ◽  
Rohit Kumar Gupta ◽  
P. Ramkumar ◽  
P.P. Sinha

Severe plastic deformation processes (SPD) are gaining importance as advanced materials processing techniques and hold immense potential in obtaining ultra fine-grained high strength materials. Among the SPD techniques, Equal channel angular pressing (ECAP) has its own merits to produce materials with ultra fine grains in bulk with better mechanical properties. The material deforms with high level of plastic strain inside the channel resulting in grain refinement of the output material with improvement in mechanical properties. A very viable die configuration was conceptualized and die was made with 1200 channel angle. Processing of 25 mm dia. of Al alloy AA2219 at room temperature was successfully carried out and grain refinement was observed. The mechanism of grain refinement has been studied using optical and transmission electron microscopy (TEM). It was observed that low energy dislocation structure (LEDS) forms concurrently with sub-grain structure due to dislocation rearrangements, which provide stability to the evolving sub-grain structure. Dislocation mobility is hindered by the presence of precipitates and / or intermetallic dispersoids present in the matrix and results in presence of dislocations in grain interiors. The pile up of dislocations at intermetallic dispersoids was confirmed from the dark field TEM micrographs. Present paper describes the experimental procedure and followed to attain severe plastic deformation through ECAP. Increase in hardness as well as refinement in the grain size after 5-passes have been discussed in light of extensive optical and TEM. The mechanisms of grain refinement to achieve nano-grained structure and strengthening accrued from the grain refinement through ECAP has been discussed.


2011 ◽  
Vol 53 (12) ◽  
pp. 1325-1330
Author(s):  
Ya. A. Abzgildin ◽  
R. F. Al’mukhametov ◽  
N. G. Zaripov ◽  
H. Ya. Mulyukov

Materia Japan ◽  
2003 ◽  
Vol 42 (12) ◽  
pp. 863-863 ◽  
Author(s):  
Keiichiro Ohishi ◽  
Takeshi Fujita ◽  
Kunihiro Ohashi ◽  
Kenji Kaneko ◽  
Zenji Horita

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ge Wu ◽  
Chang Liu ◽  
Ligang Sun ◽  
Qing Wang ◽  
Baoan Sun ◽  
...  

Abstract High strength and high ductility are often mutually exclusive properties for structural metallic materials. This is particularly important for aluminum (Al)-based alloys which are widely commercially employed. Here, we introduce a hierarchical nanostructured Al alloy with a structure of Al nanograins surrounded by nano-sized metallic glass (MG) shells. It achieves an ultrahigh yield strength of 1.2 GPa in tension (1.7 GPa in compression) along with 15% plasticity in tension (over 70% in compression). The nano-sized MG phase facilitates such ultrahigh strength by impeding dislocation gliding from one nanograin to another, while continuous generation-movement-annihilation of dislocations in the Al nanograins and the flow behavior of the nano-sized MG phase result in increased plasticity. This plastic deformation mechanism is also an efficient way to decrease grain size to sub-10 nm size for low melting temperature metals like Al, making this structural design one solution to the strength-plasticity trade-off.


2010 ◽  
Vol 63 (9) ◽  
pp. 949-952 ◽  
Author(s):  
R.Z. Valiev ◽  
N.A. Enikeev ◽  
M.Yu. Murashkin ◽  
V.U. Kazykhanov ◽  
X. Sauvage

Sign in / Sign up

Export Citation Format

Share Document