The Deformation Characteristics of Soft Clay under Cyclic Loading

2012 ◽  
Vol 446-449 ◽  
pp. 1709-1712 ◽  
Author(s):  
Yong Zhang ◽  
Li Wan ◽  
Xiong Wei Li
2012 ◽  
Vol 446-449 ◽  
pp. 1709-1712 ◽  
Author(s):  
Yong Zhang ◽  
Li Wan ◽  
Xiong Wei Li

Through the undrained dynamic triaxial experiment, the deformation characteristics of saturated soft clay under cyclic loading are investigated. The cyclic loading was simplified as sine wave. It is found that under different dynamic stress, the deformation patterns of specimen in this experiment can be divided into three kinds, such as dense compressed, tensile break-up and shear failure type. In the process of vibration, the deformation forms of samples can also be divided into three types by dynamic stress amplitude, such as stable, destructive and critical type. The dynamic stress amplitude corresponding to the critical type is called critical dynamic stress. With the dynamic elastic strain increasing gradually, the dynamic elastic modulus decreases and rigidity softening occurs. Furthermore, dynamic elastic modulus and dynamic elastic strain curve decrease while the cyclic number is increasing. Finally, to establish the equation of the relationship between dynamic elastic modulus and dynamic elastic strain, the factor of cycle number should be considered.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Si-fei Liu ◽  
Zhi-jun Wan ◽  
Jing-chao Wang ◽  
Shuai-feng Lu ◽  
Tong-huan Li

The fatigue damage of rock is an important factor affecting the stability of rock structure. In this paper, the mechanical response of coal under cyclic loading was studied. In order to accurately describe the deformation characteristics of coal under cyclic loading, an elastic-plastic model of coal based on the theory of subloading surface was established and verified by experiments. The model can well reflect the Mancin effect and ratcheting effect of coal samples, which is basically consistent with the actual deformation characteristics of coal, and the theoretical value and experimental value are in good agreement. At the same time, the cyclic response characteristics of specimens under strain load disturbance were analyzed. The results show that the specific strain disturbance can only cause a certain damage to coal and the area of hysteresis loop decreases first, then stabilizes, and then increases as the number of cycles increases. In addition, the damage factor Dn in the model was analyzed in this paper. Dn, which can accurately describe the damage process of coal, accurately locate the time point of disturbance load change, and has greater sensitivity to coal failure, is helpful to improve the accuracy of the stability judgment of coal structure and ensure the safety of engineering. The above results are of great significance for strengthening the understanding of coal mass instability process and mode under cyclic loading.


Sign in / Sign up

Export Citation Format

Share Document