The Deformation Characteristics of Soft Clay under Cyclic Loading

2012 ◽  
Vol 446-449 ◽  
pp. 1709-1712 ◽  
Author(s):  
Yong Zhang ◽  
Li Wan ◽  
Xiong Wei Li

Through the undrained dynamic triaxial experiment, the deformation characteristics of saturated soft clay under cyclic loading are investigated. The cyclic loading was simplified as sine wave. It is found that under different dynamic stress, the deformation patterns of specimen in this experiment can be divided into three kinds, such as dense compressed, tensile break-up and shear failure type. In the process of vibration, the deformation forms of samples can also be divided into three types by dynamic stress amplitude, such as stable, destructive and critical type. The dynamic stress amplitude corresponding to the critical type is called critical dynamic stress. With the dynamic elastic strain increasing gradually, the dynamic elastic modulus decreases and rigidity softening occurs. Furthermore, dynamic elastic modulus and dynamic elastic strain curve decrease while the cyclic number is increasing. Finally, to establish the equation of the relationship between dynamic elastic modulus and dynamic elastic strain, the factor of cycle number should be considered.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Min Geng ◽  
Debin Wang ◽  
Peiyong Li

To study the dynamic behavior of reinforced subgrade, a series of undrained cyclic triaxial tests of reinforced soil (the specimen a height of 50 cm and a diameter of 20 cm) were performed in this paper. The specimens were tested by varying confining pressure, vibration frequency, dynamic stress amplitudes, and reinforced layers. Orthogonal experiment is a better way to optimize the process of experiment. Impact on dynamic behavior of the reinforced soil specimens is discussed through orthogonal design of experiments in four factors and three levels. This study has demonstrated that the order of dynamic elastic modulus of reinforced soil is influenced by dynamic stress amplitude, frequency, reinforced layer, and confining pressure within changing in factor level. The dynamic stress amplitude has great influence on the dynamic elastic modulus of reinforced soil. The bearing capacity and dynamic elastic modulus of reinforced subgrade decrease slightly with the increase of dynamic strain. Frequency has an influence on the dynamic elastic modulus. It is shown that the cumulative strain of reinforced soil is related to the vibration frequency. The test results also exemplify the reinforced subgrade restrict lateral displacement of subgrade and reduce settlement of subgrade under long-term cyclic loading.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jingjing Zhou ◽  
Fasuo Zhao ◽  
Yanbo Zhu ◽  
Wenqi Dong ◽  
Ziguang He

Sliding zone dynamics in the Qinling-Daba mountain area under different dynamic parameters have not been studied extensively. In this study, we investigated the dynamic behavior of the sliding zones of a high-steep rock landslide in the Qinling-Daba mountain area under the influence of dynamic stress amplitude and frequency and proposed an empirical model of the dynamic constitutive relationship. The dynamic behavior was studied based on a cyclic triaxial test system. The results indicated that an increase in the dynamic stress amplitude decreased the dynamic elastic modulus linearly, increased the damping ratio, and increased the axial strain exponentially. Among these properties, the elastic strain was found to be more sensitive to the increase in the dynamic stress amplitude than the plastic strain. As the loading frequency increased, the dynamic elastic modulus increased, whereas the damping ratio decreased. Furthermore, the proposed empirical model of the dynamic constitutive relationship between the vibration number and loading frequency based on the dynamic elastic modulus could satisfactorily describe the dynamic stress-strain relationships of the samples from test stability and failure zones. These findings are expected to make a significant contribution toward further revealing the sliding mechanism of such landslides.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Dong Zhang ◽  
Ai-hong Lu ◽  
Xia Wang ◽  
Yu Xia ◽  
Si-yu Gong ◽  
...  

Understanding the mechanical properties and energy response of high-porosity concrete under the cyclic loading and unloading is the foundation of road construction in sponge city. In this study, the concrete with the porosity of 15% was taken as the research object, and the cyclic loading and unloading tests on the high-porosity concrete were performed under the stress amplitude of 25 MPa, 30 MPa, and 35 MPa in the elastic stage. The effects of stress amplitude and cycle number on the mechanical characteristics and damage evolution law of concrete were obtained. The experimental results show the following. (1) With the increase of cycle number, the loading and unloading elastic modulus of concrete under different stress amplitudes first increases and then decreases; the greater the stress amplitude, the faster the growth and deceleration of the loading and unloading elastic modulus. (2) With the increase of the cycle number, the peak strain and residual plastic deformation increase. (3) The greater the stress amplitude, the higher the damage of concrete; with the increasing number of cyclic loading and unloading, the damage of concrete is enhanced gradually. When the damage variable value is 1, the relationship between the cycle number and the initial stress amplitude satisfies a negative exponential function.


2014 ◽  
Vol 638-640 ◽  
pp. 1967-1970
Author(s):  
Xiao Hui Ni

The uniaxial cyclic fatigue tests on granite coming from the ChangJiang of Hainan nuclear power first-stage construction conventional island were done on the RMT-150B multi-function automatic rigid rock servo material testing machine. Stress amplitude of 10 MPa and sine wave cyclic loads with five different frequencies of 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 1 Hz were adopted as dynamic disturbance. The law between cyclic frequency and dynamic stress-dynamic strain hysteretic curve, dynamic elastic modulus and damping ratio are researched. The results showed that the curves of strain and stress for loading and unloading are not superposition under cyclic loading, but hysteretic loops. When cyclic frequency changes between 0.01 and 1.0 Hz, the granite hysteretic loop area, dynamic elastic modulus and damping ratio are increased with frequency increasing. The research result offered great reference value to seismic response analysis and site safety evaluation of the changjiang nuclear power.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xuemeng Jiang ◽  
Haoshuang Niu ◽  
Wenpeng Huang ◽  
Xuwen Shang ◽  
Deng Wang

In practical engineering, if the influence of noncoaxial stress and strain is not considered, part of soil deformation will be ignored, resulting in the structural design which is not safe enough. A series of undrained tests was performed on remolded loess specimens using a hollow cylinder apparatus to examine the coupling between principal stress magnitude and direction in these specimens. First, the elastic parameters of remolded loess were obtained, and these parameters were used as the basis for investigating the noncoaxiality of the soil body under principal stress axis rotation (PSAR). The effects of elastic strain, intermediate principal stress coefficient, and magnitude of the deviatoric stress on the noncoaxiality of remolded loess were also investigated. The results of these experiments show that remolded loess exhibits significant noncoaxial behavior during PSAR. The noncoaxiality angle of remolded loess cyclically fluctuates with increases in the principal stress angle. It was also observed that the noncoaxiality angle will be overestimated if the effects of elastic strain are overlooked. Reversals in the direction of PSAR cause dramatic changes in the noncoaxiality angle. Increases in the intermediate principal stress coefficient are accompanied by increases in the noncoaxiality angle, up to a certain degree; however, these changes do not affect the development of the noncoaxiality angle. In coupled rotational tests with a range of deviatoric stress amplitudes, it was observed that changes in the deviatoric stress amplitude will affect the development of the noncoaxiality angle; increases in the deviatoric stress amplitude cause the noncoaxiality angle versus principle stress angle plot to shift to the left gradually, thus accelerating the trends of the noncoaxiality angle. Increases in the cycle number also increase the noncoaxiality of remolded loess.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yuan Ma ◽  
Hua Liang ◽  
Yongxue You ◽  
Weiguang Zhang ◽  
Limin Guo ◽  
...  

The creep problems are often involved in soil under cyclic loading, and its behaviors of soil under cyclic loading sparks many arguments in current research field. To propose one new model to demonstrate these creep behaviors of soil under cyclic loading, the cyclic loading was simplified equivalently, and the elastic-viscoplastic model (EVPM) for soil under cyclic loading was established based on the Bingham model. The yield criterion for soil under cyclic loading with constant amplitude was proposed following the simplified load. A constitutive equation based on the EVPM was constructed by using the flow criterion related to the yield criterion. Meanwhile, the parameters of EVPM were identified and discussed. In addition, the case analysis of the EVPM was also performed. The results indicate that the stable and destructive creep behaviors of soil under cyclic loading could be well described by the recommended EVPM, and the obtained parameters in the model exhibited a clear regularity with the increase of dynamic stress amplitude. Besides, the established model could be selected to predict the stable and destructive creep behavior of soil under cyclic loading.


2011 ◽  
Vol 110-116 ◽  
pp. 3512-3517
Author(s):  
Kai Qu ◽  
Xu Dong Zhang ◽  
Jie Zhang

During the service life of a solid rocket motor, the interface of liner and propellant is subjected to cyclic loading. In order to find the damage law of it, fixed stress amplitude cyclic loading experiment was used. In the process of the experiment, constitutive behavior and dissipative energy mainly researched. The influence of the fixed stress amplitude on properties of liner/propellant was also studied. The results show that the remains strain increased following the increase of cyclic number. The dissipative energy of every cyclic loading is random, so it does not adapt to be damage variable. The stress amplitude and natural logarithm of the cycle number accord with exponent equation.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Huafeng Deng ◽  
Yinchai Zhang ◽  
Yongyan Zhi ◽  
Lingling Duan ◽  
Jianlin Li ◽  
...  

During the long-term reservoir operation, the seismic capability and dynamic response characteristics of the bank slope are of great importance to its safety evaluation content. Aimed at typical bank slopes, considering reservoir water level fluctuation and soaking-air drying cyclic interaction, an experiment has been designed and conducted. In addition, the cyclic loading test with different stress amplitudes was carried out in different water-rock cycles. The laboratory results indicate that (1) during the immersion-air dry circulation process, the damping ratio and damping coefficient of sandstone gradually increased while the dynamic elastic modulus decreased. It is obvious that the dynamic elastic modulus of sandstone decreases dramatically during the immersion-air dry circulation process, especially in the first six periods. Also, its variation curve fits with the logarithmic curve. (2) When the cyclic load stress amplitude increases from 10 MPa to 35 MPa, the damping ratio and coefficient of the rock sample gradually decreased while dynamic elastic modulus increased. each dynamic parameter shows a more obvious variation trend when the stress amplitude is lower than 25 MPa. (3) During the water-rock interaction process, the closely knit microstructure of rock gradually becomes loose and porous, which resulted in the degradation of macroscopic physical and mechanical properties of sandstone. (4) In the analysis of the seismic response of the bank slope, the actual water-rock interaction process and the seismic level of the bank slope should be more considered. To find out further accurate reflection in the earthquake resistance and dynamic response of the bank slope, it is necessary to select the reasonable dynamic parameter to carry out seismic research.


2012 ◽  
Vol 446-449 ◽  
pp. 1709-1712 ◽  
Author(s):  
Yong Zhang ◽  
Li Wan ◽  
Xiong Wei Li

Sign in / Sign up

Export Citation Format

Share Document