A Comprehensive Review on Magnetic Abrasive Finishing Process

2016 ◽  
Vol 18 ◽  
pp. 1-20 ◽  
Author(s):  
Mohannad Naeem Houshi

In the nanotechnology era, the need for products with high quality and surfaces with free-from damage has become an urgent necessity. Many components in the precision industries such as electronics, automobile, medical, and aviation require high surface finish to meet their functional requirements, such as, reducing fluid flow resistance, friction, optical losses and increase fatigue strength. However, the scale of such surface quality cannot be achieved by traditional finishing methods. To overcome these limitations, many advanced finishing processes have been developed such as abrasive flow finishing, magnetorheological fluid finishing, magnetic float polishing, and chemical mechanical polishing and magnetic abrasive finishing. Magnetic abrasive finishing (MAF) is one of advanced finishing processes which offers superior surface finish over conventional finishing processes, because of its self-adaptability to finish of different geometric shapes, its a gentle tool which does not impact workpiece surface, its capability to polish advanced engineering materials and its low cost. This article has been focused on MAF, as well as reviewing of advanced finishing processes. The recent researches and challenges of MAF have been discussed as well.

2017 ◽  
Vol 3 (1) ◽  
Author(s):  
Lida Heng ◽  
Yon Jig Kim ◽  
Sang Don Mun

AbstractRecent developments in the engineering industry have created a demand for advanced materials with superior mechanical properties and high-quality surface finishes. Some of the conventional finishing methods such as lapping, grinding, honing, and polishing are now being replaced by non-conventional finishing processes. Magnetic Abrasive Finishing (MAF) is a non-conventional superfinishing process in which magnetic abrasive particles interact with a magnetic field in the finishing zone to remove materials to achieve very high surface finishing and deburring simultaneously. In this review paper, the working principles, processing parameters, and current limitations for the MAF process are examined via reviewing important work in the literature. Additionally, future developments of the MAF process are discussed.


2008 ◽  
Vol 389-390 ◽  
pp. 199-204
Author(s):  
Wei Qiang Gao ◽  
L. Meng ◽  
Qiu Sheng Yan ◽  
J.H. Song ◽  
T.X. Qiu

In this paper, a new kind of NC magnetic abrasive finishing method with meshy polishing track to grind the parting face of mould was presented, and a new simple polishing tool using permanent magnet was also developed. Using the magnetic polishing tool, 3D NC polishing experiments was conducted on 2D parting surfaces. Experimental results reveal the relationship between several main parameters (rotational speed of magnetic pole, working gap, feeding speed and number of polishing times) and surface roughness. This study is expected to be helpful to improve the efficiency of finishing process, reduce worker's labor intensity, realize the effective control of finishing process and obtain fine quality of workpiece surface.


Author(s):  
V. K. Jain ◽  
Pankaj Singh ◽  
Puneet Kumar ◽  
Ajay Sidpara ◽  
Manas Das ◽  
...  

Magnetorheological finishing (MRF) process is one of the fine abrasive finishing processes used to get better surface finish on a semi finished part. The present work is aimed at investigating the effectiveness and validity of magnetorheological finishing process and finding out the process parameters (such as finishing time, rotational speed of carrier wheel, abrasive concentration, and working gap) and their effectiveness on surface finish characteristics. MRF process is applied on brass and nonmagnetic stainless steel workpieces which were initially finished by the grinding process. The results of experiments were statistically analyzed by response surface methodology (RSM) to form an empirical model for the responses generated during the process. Also, an attempt has been made to model and simulate the finishing operation in MRF process. Apart from this, the micro structure of the mixture of magnetic and abrasive particles in magnetorheological polishing fluid (MR Fluid) has been proposed. Thereafter the normal force on the abrasive particles is calculated from the applied magnetic field and a model for the prediction of surface roughness has also been presented. Finally, theoretical results calculated using the proposed model, have been compared with the experimental results to validate the model developed.


Author(s):  
Atul Khatri ◽  
Vinod Yadava

The final machining (or finishing) of precision parts with high accuracy level is making the application of abrasive finishing technologies increasingly important. Magnetic abrasive finishing (MAF) is a new advanced finishing process used for fine finishing of extremely hard materials. It is employed for finishing of metals and non-metals. This paper focuses on the modeling and simulation for the prediction of surface roughness in plane magnetic abrasive finishing. A finite element based model is developed to find the magnetic potential distribution in gap between tool and workpiece. Further, magnetic potential is used to evaluate machining pressure, material removal and finally surface roughness of the workpiece surface. The simulation results are confirmed compared with the experimental results available in the literature. The simulated workpiece surface roughness shows features which are similar in nature to the experimental results.


2011 ◽  
Vol 325 ◽  
pp. 536-541
Author(s):  
G.Y. Liu ◽  
Zhong Ning Guo ◽  
Yuan Bo Li ◽  
J.W. Liu

In hybrid process of electrolytic magnetic abrasive finishing (EMAF), there are usually two structures on the tool design, separated or composited. This paper has been focused on the design of the composite tool. How to make electrolyte reach working area is a problem which should be solved for the EMAF process when the composite tool is used, therefore a hollow structure of magnetic pole has been put forward as one possible solution. To understand the effects of the structure parameters of the tool on the abrasive brush of EMAF, Finite Element Method (FEM) has been employed to establish the magnetic field model and analyze the distribution of magnetic induction on the workpiece surface and magnetic pole.


2020 ◽  
Vol 38 (8A) ◽  
pp. 1137-1142
Author(s):  
Baqer A. Ahmed ◽  
Saad K. Shather ◽  
Wisam K. Hamdan

In this paper the Magnetic Abrasive Finishing (MAF) was utilized after Single Point Incremental Forming (SPIF) process as a combined finishing process. Firstly, the Single Point Incremental forming was form the truncated cone made from low carbon steel (1008-AISI) based on Z-level tool path then the magnetic abrasive finishing process was applied on the surface of the formed product. Box-Behnken design of experiment in Minitab 17 software was used in this study. The influences of different parameters (feed rate, machining step size, coil current and spindle speed) on change in Micro-Vickers hardness were studied. The maximum and minimum change in Micro-Vickers hardness that achieved from all the experiments were (40.4 and 1.1) respectively. The contribution percent of (feed rate, machining step size, coil current and spindle speed) were (7.1, 18.068, 17.376 and 37.894) % respectively. After MAF process all the micro surface cracks that generated on the workpiece surface was completely removed from the surface.


Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 81
Author(s):  
Yanhua Zou ◽  
Ryunosuke Satou ◽  
Ozora Yamazaki ◽  
Huijun Xie

High quality, highly efficient finishing processes are required for finishing difficult-to-machine materials. Magnetic abrasive finishing (MAF) process is a finishing method that can obtain a high accuracy surface using fine magnetic particles and abrasive particles, but has poor finishing efficiency. On the contrary, fixed abrasive polishing (FAP) is a polishing process can obtain high material removal efficiency but often cannot provide a high-quality surface at the nano-scale. Therefore, this work proposes a new finishing process, which combines the magnetic abrasive finishing process and the fixed abrasive polishing process (MAF-FAP). To verify the proposed methodology, a finishing device was developed and finishing experiments on alumina ceramic plates were performed. Furthermore, the mechanism of the MAF-FAP process was investigated. In addition, the influence of process parameters on finishing characteristics is discussed. According to the experimental results, this process can achieve high-efficiency finishing of brittle hard materials (alumina ceramics) and can obtain nano-scale surfaces. The surface roughness of the alumina ceramic plate is improved from 202.11 nm Ra to 3.67 nm Ra within 30 min.


Sign in / Sign up

Export Citation Format

Share Document