The Effect of Die Channel Angles and their Combination on Plastic Deformation of Pure Copper during Equal Channel Angular Pressing Using Finite Element Modelling

2019 ◽  
Vol 31 ◽  
pp. 63-69
Author(s):  
Malothu Ramulu ◽  
Arkanti Krishnaiah

It was investigated the effect of die channel angles and their combination on plastic deformation of pure copper during ECAP under friction and frictionless conditions using 2-D elastic-plastic finite element modelling. A sound knowledge obtained for the plastic deformation (material flow) and understood the relationships between plastic deformations. The modelling results suggested that strain inhomogeneity was lesser in channel angle 120o than channel angle 90o and pressing load as well as strain decrease with increasing die channel angle. The friction influence in case of combination of channel angles was negligible as compare to individual channel angles. The strain generation and distribution was more uniform in case of combination of channel angles as compare to individual channel angles.

2011 ◽  
Vol 2 (3) ◽  
pp. 416-423
Author(s):  
K. De Keyser ◽  
F. Van Acker ◽  
Stijn Hertelé ◽  
Matthias Verstraete ◽  
Wim De Waele ◽  
...  

To investigate the influence of global plastic deformations on girth weld defect tolerance inpipelines, a parametric finite element model has been developed. This paper provides an experimentalvalidation of the model. It describes the test setup and instrumentation used for the evaluation of plasticstrain fields around a notch in a tension loaded non-welded X65 mini wide plate. LVDT measurements anddigital image correlation (DIC) results are compared to each other and to the results of finite elementsimulations. Whereas some deviation is observed owing to unavoidable experimental uncertainties andlimitations of finite element modelling, the overall correspondence is more than satisfying.


2008 ◽  
Vol 584-586 ◽  
pp. 108-113 ◽  
Author(s):  
Lech Olejnik ◽  
Andrzej Rosochowski ◽  
Maria W. Richert

Batch severe plastic deformation (SPD) processes are mainly used for laboratory purposes. More industrially oriented are continuous processes among which the new SPD process of Incremental Equal Channel Angular Pressing (I-ECAP) is an attractive option. This paper investigates the feasibility of using I-ECAP for nanostructuring of plates rather than bars. First, a 3D finite element simulation has been performed which shows the importance of restricting material flow in the direction of plate width. A laboratory rig has been designed, which converts the vertical movement of the machine crosshead into an oblique movement of the reciprocating punch. Preliminary trials of I-ECAP have been carried out on a 4x30x100mm Al 1070 plate. Metallurgical samples after 4 and 8 passes of I-ECAP (route A) have been investigated using TEM. In conclusion, the new SPD process of I-ECAP is capable of processing plates, which opens up new possibilities of nanostructuring metals on an industrial scale.


2004 ◽  
Vol 824 ◽  
Author(s):  
Therese Källgren ◽  
Lai-Zhe Jin ◽  
Rolf Sandström

AbstractIn an effort to enhance safety for long time disposal of waste nuclear fuel, friction stir welding has been developed as one alternative to seal copper canisters. To avoid the formation of voids and cracks during the welding process, an understanding of the heat and material flow andthereby the evolution of the microstructure, is of great importance. Finite element modelling has been used to simulate the heat and material flow as well as thermal expansion during the friction stir welding process. A model involving heat transfer, material flow, and continuum mechanics has been developed. The steady state solutions have been compared with experimental temperature observations as well as analytical solutions, showing good agreement. Temperature distribution is affected by the welding speed. For a given reference pointperpendicular to the welding direction, a lower welding speed corresponds to a higher peak temperature. The plunging position of welding tool influences the temperature distribution and therefore the displacement distribution of the weldment.


2005 ◽  
Vol 495-497 ◽  
pp. 785-790 ◽  
Author(s):  
Igor V. Alexandrov ◽  
M.V. Zhilina ◽  
A.V. Scherbakov ◽  
Alexander Korshunov ◽  
P.N. Nizovtsev ◽  
...  

The paper represents results of computer modeling of texture formation in pure copper subjected to severe plastic deformation (SPD) realized by equal channel angular pressing (ECAP). Several polycrystalline models, namely the Taylor model, Sachs model, and self-consistent viscous plastic (VPSC) model, were applied and their predictions of texture evolution for different routes and number of ECAP passes were compared. For these calculations, simple shear deformation was used for the deformation realized by ECAP. Using the VPSC model, a single ECAP pass was revisited, but employing a 3D model of material flow, conducted by the variation-difference method, for the ECAP deformation. The influence of the inner and outer radii at the channel intersection and the friction coefficient on the homogeneity of the texture development in the cross section of the bulk ingot was investigated.


Sign in / Sign up

Export Citation Format

Share Document