Research on Damage Alarming Method of Structures Based on Information Statistics in Frequency Domain

2011 ◽  
Vol 105-107 ◽  
pp. 770-773
Author(s):  
Yan Sheng Song ◽  
Zong Guang Sun ◽  
Hong Hai

This paper demonstrates the feasibility of a new structural damage alarming method based on statistics. The abnormal index was introduced to analyze the benchmark structure in frequency domain. The results show the abnormal index defined in sense of statistics indicates the abnormity of corresponding test cases clearly.

2012 ◽  
Vol 226-228 ◽  
pp. 1214-1217
Author(s):  
Yan Sheng Song ◽  
Zong Guang Sun ◽  
Li Ye Sun

Based on the statistical probability of abnormal frequency offset, this paper puts forward a new structural damage alarm index. Demonstrating the feasibility of corresponding structural damage alarming method, this article introduces the index to analize a steel frame structure in frequency domain. The results show the abnormal index defined in sense of statistics indicates the abnormity of corresponding test cases clearly.


2013 ◽  
Vol 351-352 ◽  
pp. 1269-1272
Author(s):  
Yan Sheng Song ◽  
Wei Ning Ni ◽  
Zong Guang Sun

Based on the statistics probability of certain order frequenciy deviates from its normal range, this paper puts forward a new damage alarm index and corresponding damage alarming method for structural health monitoring. Demonstrating the feasibility of this method, this article introduces the damage alarming method to analize the benchmark steel frame in frequency domain. The results show the abnormal index and its corresponding alarming method defined in sense of statistics indicates the abnormity of corresponding test cases clearly.


2011 ◽  
Vol 368-373 ◽  
pp. 2299-2302
Author(s):  
Yan Sheng Song ◽  
Zong Guang Sun ◽  
Fan Gu

This paper addresses a new damage alarming method of structural health monitoring (SHM) which utilizes statistic method on information in frequency domain. The emphasis in this paper is on the application of this method to the benchmark structure by introduced an abnormal index. The results show this method could indicate the abnormity of corresponding test cases clearly.


2020 ◽  
Vol 91 (5) ◽  
pp. 2872-2880 ◽  
Author(s):  
Felix Bernauer ◽  
Joachim Wassermann ◽  
Heiner Igel

Abstract Inertial sensors like seismometers or accelerometers are sensitive to tilt motions. In general, from pure acceleration measurements, it is not possible to separate the tilt acceleration from the translational ground acceleration. This can lead to severe misinterpretation of seismograms. Here, we present three different methods that can help solving this problem by correcting translational records for dynamic tilt induced by ground deformation with direct measurements of rotational motions: (1) a simple time-domain method, (2) a frequency-domain method proposed by Crawford and Webb (2000) using a coherence-weighted transfer function between rotation and acceleration, and (3) an adapted frequency-domain method that corrects only those parts of the spectrum with coherence between translational acceleration and rotation angle higher than 0.5. These three methods are discussed in three different experimental settings: (1) a reproducible and precisely known laboratory test using a high-precision tilt table, (2) a synthetic test with a simulated volcanic very-long-period event, and (3) a real data set recorded during the 2018 Mt. Kīlauea caldera collapse. All the three test cases show severe influence of tilt motion on the acceleration measurements. The time-domain method and the adapted frequency-domain method show very similar performance in all three test cases. Those two methods are able to remove the tilt component reliably from the acceleration record.


2003 ◽  
Vol 125 (1) ◽  
pp. 25-32 ◽  
Author(s):  
W. Ning ◽  
Y. S. Li ◽  
R. G. Wells

A multistage frequency domain (time-linearized/nonlinear harmonic) Navier-Stokes unsteady flow solver has been developed for predicting unsteady flows induced by bladerow interactions. In this paper, the time-linearized option of the solver has been used to analyze unsteady flows in a subsonic turbine test stage and the DLR transonic counter-rotating shrouded propfan. The numerical accuracy and computational efficiency of the time-linearized viscous methods have been demonstrated by comparing predictions with test data and nonlinear time-marching solutions for these two test cases. It is concluded that the development of efficient frequency domain approaches enables unsteady flow predictions to be used in the design cycles to tackle aeromechanics problems.


Author(s):  
Shuncong Zhong ◽  
S. Olutunde Oyadiji

This paper proposes a response-only method in frequency domain for structural damage detection by using the derivative of natural frequency curve of beam-like structures with a traversing auxiliary mass. The approach just uses the response time history of beam-like structures and does not need the external source of force excitation. The natural frequencies of a damaged beam with a traversing auxiliary mass change due to change in flexibility and inertia of the beam as the auxiliary mass is traversed along the beam. Therefore the auxiliary mass can enhance the effects of the crack on the dynamics of the beam and, therefore, facilitating locating the damage in the beam. That is, the auxiliary mass can be used to probe the dynamic characteristic of the beam by traversing the mass from one end of the beam to the other. However, it is impossible to obtain accurate modal frequencies by the direct operation of the Fast Fourier Transform of the response data of the structure because the frequency spectrum can be only calculated from limited sampled time data which results in the well-known leakage effect. A spectrum correction method is employed to estimate high accurate frequencies of structures with a traversing auxiliary mass. In the present work, the modal responses of damaged simply supported beams with auxiliary mass are computed using the Finite Element Analysis. The graphical plots of the natural frequencies versus axial location of auxiliary mass are obtained. The derivatives of natural frequency curve can provide crack information for damage detection of beam-like structures. However, it is suggested that the derivative do not go beyond the third derivative of natural frequency curves to avoid the difference approximation error which will be magnified at higher derivative. The sensitivity of crack index for different noise, crack depth, auxiliary mass and damping ratio are also investigated. The simulated result demonstrated the efficiency and precision of the response-only frequency-domain method which can be recommended for the real application in structural damage detection.


2010 ◽  
Vol 163-167 ◽  
pp. 2693-2698 ◽  
Author(s):  
Peng Sun ◽  
Ai Qun Li ◽  
You Liang Ding ◽  
Yang Deng

The damage alarming analysis based on wavelet packet energy spectrum is performed with regard to the experimental data of Benchmark steel frame structure and online monitoring data of Runyang Suspension Bridge, on the basis of which the damage alarming effects using various wavelet functions are investigated in detail. Results reveal that the Daubechies wavelet functions and Coiflets wavelet functions are applicable to structural damage alarming.


Author(s):  
W. Ning ◽  
Y. S. Li ◽  
R. G. Wells

A multistage frequency domain (time-linearized/nonlinear harmonic) Navier-Stokes unsteady flow solver has been developed for predicting unsteady flows induced by bladerow interactions. In this paper, the time-linearized option of the solver has been used to analyze unsteady flows in a subsonic turbine test stage and the DLR transonic counter-rotating shrouded propfan. The numerical accuracy and computational efficiency of the time-linearized viscous methods have been demonstrated by comparing predictions with test data and nonlinear time-marching solutions for these two test cases. It is concluded that the development of efficient frequency domain approaches enables unsteady flow predictions to be used in the design cycles to tackle aeromechanics problems.


Sign in / Sign up

Export Citation Format

Share Document