A Structural Damage Alarm Index Based on the Statistical Probability of Abnormal Frequency Offset

2012 ◽  
Vol 226-228 ◽  
pp. 1214-1217
Author(s):  
Yan Sheng Song ◽  
Zong Guang Sun ◽  
Li Ye Sun

Based on the statistical probability of abnormal frequency offset, this paper puts forward a new structural damage alarm index. Demonstrating the feasibility of corresponding structural damage alarming method, this article introduces the index to analize a steel frame structure in frequency domain. The results show the abnormal index defined in sense of statistics indicates the abnormity of corresponding test cases clearly.

2010 ◽  
Vol 163-167 ◽  
pp. 2693-2698 ◽  
Author(s):  
Peng Sun ◽  
Ai Qun Li ◽  
You Liang Ding ◽  
Yang Deng

The damage alarming analysis based on wavelet packet energy spectrum is performed with regard to the experimental data of Benchmark steel frame structure and online monitoring data of Runyang Suspension Bridge, on the basis of which the damage alarming effects using various wavelet functions are investigated in detail. Results reveal that the Daubechies wavelet functions and Coiflets wavelet functions are applicable to structural damage alarming.


2013 ◽  
Vol 351-352 ◽  
pp. 1269-1272
Author(s):  
Yan Sheng Song ◽  
Wei Ning Ni ◽  
Zong Guang Sun

Based on the statistics probability of certain order frequenciy deviates from its normal range, this paper puts forward a new damage alarm index and corresponding damage alarming method for structural health monitoring. Demonstrating the feasibility of this method, this article introduces the damage alarming method to analize the benchmark steel frame in frequency domain. The results show the abnormal index and its corresponding alarming method defined in sense of statistics indicates the abnormity of corresponding test cases clearly.


2011 ◽  
Vol 105-107 ◽  
pp. 770-773
Author(s):  
Yan Sheng Song ◽  
Zong Guang Sun ◽  
Hong Hai

This paper demonstrates the feasibility of a new structural damage alarming method based on statistics. The abnormal index was introduced to analyze the benchmark structure in frequency domain. The results show the abnormal index defined in sense of statistics indicates the abnormity of corresponding test cases clearly.


2012 ◽  
Vol 204-208 ◽  
pp. 2883-2886
Author(s):  
Ning Zhang ◽  
Zhuo Bin Wei ◽  
Zi Wang ◽  
Sen Wu

The method of damage alarming based on wavelet packet analysis which applied on steel-frame structure is researched. Firstly, the method of damage identification based on wavelet packet analysis is introduced. Secondly, in view of the dependability of the method on the excitation, virtual impulse response function is brought in to enhance robustness of the method to the excitation. Lastly, through the steel-frame structure experimentation of damage alarming, the two damage modes of the structure are identified by the method based on wavelet packet energy spectrum. The experimentation results show that the effect of damage alarming to the steel-frame structure is completely obvious by wavelet packet analysis. Accordingly, this method has much application value for engineering.


2014 ◽  
Vol 578-579 ◽  
pp. 1153-1156
Author(s):  
Hong Biao Liu ◽  
Qiang Zhang

In order to verify the feasibility and validity of frequency ratio as diagnostic parameter in structural damage detection proposed in the Musical Tone Law Method (MTLM), steel pipes and three-story steel frame structure model tests are carried out. According to the experiment results, it is clear that the diagnostic parameter is effective for symmetrical structure in structural damage detection, such as cable structure, framed structure, and so on. Model tests prove that the frequency ratio is effective in detecting the 3mm width crack damage of steel pipe. In the damage detection test of three-story steel frame structure, the parameter also successfully diagnosed the damage caused by bolts loosening at the node of model.


2010 ◽  
Vol 168-170 ◽  
pp. 553-558
Author(s):  
Feng Xia Li ◽  
Bu Xin

Most steel beam-column connections actually show semi-rigid deformation behavior that can contribute substantially to overall displacements of the structure and to the distribution of member forces. Steel frame structure with semi-rigid connections are becoming more and more popular due to their many advantages such as the better satisfaction with the flexible architectural design, low inclusive cost and environmental protect as well. So it is very necessary that studying the behavior of those steel frame under cyclic reversal loading. On the basics of connections experiments the experiment research on the lateral resistance system of steel frame structure has been completed. Two one-second scale, one-bay, two-story steel frames with semi-rigid connections under cyclic reversal loading. The seismic behavior of the steel frames with semi-rigid connections, including the failure pattern, occurrence order of plastic hinge, hysteretic property and energy dissipation, etc, was investigated in this paper. Some conclusions were obtained that by employing top-mounted and two web angles connections, the higher distortion occurred in the frames, and the internal force distributing of beams and columns was changed, and the ductility and the absorbs seismic energy capability of steel frames can be improved effectively.


2019 ◽  
Vol 10 (1) ◽  
pp. 48-55
Author(s):  
Parthasarathi N. ◽  
Satyanarayanan K.S. ◽  
Prakash M. ◽  
Thamilarasu V.

Purpose Progressive collapse because of high temperatures arising from an explosion, vehicle impact or fire is an important issue for structural failure in high-rise buildings. Design/methodology/approach The present study, using ABAQUS software for the analysis, investigated the progressive collapse of a two-dimensional, three-bay, four-storey steel frame structure from high-temperature stresses. Findings After structure reaches the temperature results like displacement, stress axial load and shear force are discussed. Research limitations/implications Different temperatures were applied to the columns at different heights of a structure framed with various materials. Progressive collapse load combinations were also applied as per general service administration guidelines. Originality/value This study covered both steady-state and transient-state conditions of a multistorey-frame building subjected to a rise in temperature in the corner columns and intermediate columns. The columns in the framed structure were subjected to high temperatures at different heights, and the resulting displacements, stresses and axial loads were obtained, analysed and discussed.


Sign in / Sign up

Export Citation Format

Share Document