Computer Simulations of Galvanic Corrosion Behaviour of Zinc –Aluminium Based Composites Reinforced with Red Mud by Potentiodynamic Polarization Techniques Leading to Corrosion Control

2011 ◽  
Vol 110-116 ◽  
pp. 1121-1124
Author(s):  
H.V. Jayaprakash ◽  
M.K. Veeraiah ◽  
P.V. Krupakara ◽  
C. Gireesha

The present investigation aims to evaluate the corrosion control properties of metal matrix composites in comparison with matrix alloy using different concentration of Sodium chloride solutions and potentiodynamic polarization techniques. Matrix alloy used in ZA-27 and the reinforcement used was red mud particulates of size 50-80 microns. Composites are prepared by liquid melt metallurgy technique using vortex method. Red mud particulates reinforced varying from two to six percent by weight in steps of two percent under dry conditions. Specimens are prepared according to ASTM standards. Both composites and corresponding base alloys were subjected to identical test conditions to understand the influence of the reinforcement on alloy corrosion behaviour and effective corrosion control. Composites became less prone to corrosion and pit formation than the matrix alloy, which may be due to chemically inert red mud particles present in the metal matrix composites. On the other hand the test also reveals that corrosion resistance of both alloy and composites in crease with increase in normality of the sodium chloride solution, which may be due to increasing concentration of hydrogen ions in the solution. Corrosion of alloys can be effectively controlled by converting them in to composites by the addition of inert materials like silica particulates. If any automobile parts like bearing are made using these composites corrosion control properties can be tailored so that they can be used effectively in wide area of application.

Author(s):  
M. G. Burke ◽  
M. N. Gungor ◽  
P. K. Liaw

Aluminum-based metal matrix composites offer unique combinations of high specific strength and high stiffness. The improvement in strength and stiffness is related to the particulate reinforcement and the particular matrix alloy chosen. In this way, the metal matrix composite can be tailored for specific materials applications. The microstructural characterization of metal matrix composites is thus important in the development of these materials. In this study, the structure of a p/m 2014-SiC particulate metal matrix composite has been examined after extrusion and tensile deformation.Thin-foil specimens of the 2014-20 vol.% SiCp metal matrix composite were prepared by dimpling to approximately 35 μm prior to ion-milling using a Gatan Dual Ion Mill equipped with a cold stage. These samples were then examined in a Philips 400T TEM/STEM operated at 120 kV. Two material conditions were evaluated: after extrusion (80:1); and after tensile deformation at 250°C.


Sign in / Sign up

Export Citation Format

Share Document